Show simple item record

dc.contributor.authorKaptanoǧlu, H. T.en_US
dc.date.accessioned2016-02-08T10:23:15Z
dc.date.available2016-02-08T10:23:15Z
dc.date.issued2005en_US
dc.identifier.issn0019-2082
dc.identifier.urihttp://hdl.handle.net/11693/24044
dc.description.abstractExtended Bergman projections from Lebesgue classes onto all Besov spaces on the unit ball are defined and characterized. Right inverses and adjoints of the projections share the property that they are imbeddings of Besov spaces into Lebesgue classes via certain combinations of radial derivatives. Applications to the Gleason problem at arbitrary points in the ball, duality, and complex interpolation in Besov spaces are obtained. The results apply, in particular, to the Hardy space H2, the Arveson space, the Dirichlet space, and the Bloch space. © 2005 University of Illinois.en_US
dc.language.isoEnglishen_US
dc.source.titleIllinois Journal of Mathematicsen_US
dc.titleBergman projections on Besov spaces on ballsen_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematics
dc.citation.spage385en_US
dc.citation.epage403en_US
dc.citation.volumeNumber49en_US
dc.citation.issueNumber2en_US
dc.publisherDuke University Pressen_US
dc.identifier.eissn1945-6581


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record