Show simple item record

dc.contributor.authorOstrovskii, I.en_US
dc.contributor.authorÜreyen, E.en_US
dc.date.accessioned2016-02-08T10:22:13Z
dc.date.available2016-02-08T10:22:13Z
dc.date.issued2005en_US
dc.identifier.issn1631-073X
dc.identifier.urihttp://hdl.handle.net/11693/23975
dc.description.abstractWe obtain lower asymptotic at ∞ estimates of the distance between a maximum modulus point and zero set of an entire function provided that the function is of regular growth with respect to a proximate order. The more regular the growth is the better the estimates are, and they are sharp in some sense. The case of infinite order is also considered; in this case a suitable analogue of usual proximate order is exploited. © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.en_US
dc.language.isoEnglishen_US
dc.source.titleComptes Rendus Mathematiqueen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.crma.2005.09.012en_US
dc.titleMaximum modulus points and zero sets of entire functions of regular growthen_US
dc.title.alternativePoints de module maximal et ensemble de źeros des fonctions entières de croissance regulièreen_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematicsen_US
dc.citation.spage481en_US
dc.citation.epage484en_US
dc.citation.volumeNumber341en_US
dc.citation.issueNumber8en_US
dc.identifier.doi10.1016/j.crma.2005.09.012en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record