A new tool for differentiating hepatocellular cancer cells: patterned carbon nanotube arrays

Date
2015
Authors
Kucukayan-Dogu, G.
Gozen, D.
Bitirim, V.
Akcali, K. C.
Bengu, E.
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Applied Surface Science
Print ISSN
0169-4332
Electronic ISSN
Publisher
Elsevier
Volume
351
Issue
Pages
27 - 32
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

We aimed to develop a new approach to detect the invasiveness and metastatic degree of hepatocellular carcinoma cells (HCC) based on their epithelial mesenchymal transition (EMT) status by using patterned carbon nanotubes (CNT) without any further surface functionalization. We used well differentiated HUH7 and poorly differentiated SNU182 cells to examine and compare their adhesive features on patterned CNTs. We found that the well differentiated HUH7 cells attached significantly more on the patterned CNTs than the poorly differentiated SNU182 cells due to the difference in epithelial and mesenchymal phenotypes of these cells. Collagen coated patterned CNTs having less roughness resulted in a decrease in the number of attached cells compared to non-coated patterned surfaces indicating that surface topography playing also a vital role on the cell attachment. LDH testing indicated no adverse, or thereof toxic effect of collagen coated or non-coated patterned surfaces on the HCC cells. The results of this study clearly suggest that patterned CNT surfaces can be used as a diagnostic tool to determine the invasiveness and metastatic level of HCCs. Hence, CNTs could be considered as a promising diagnostic tool for the detection of differentiation and invasiveness of the HCC cells. © 2015 Elsevier B.V. All rights reserved.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)