A theorem of Jon F. Carlson on filtrations of modules
Date
2007
Authors
Altunbulak, F.
Yalçın, E.
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
1
views
views
7
downloads
downloads
Citation Stats
Series
Abstract
We give an alternative proof to a theorem of Carlson [J.F. Carlson, Cohomology and induction from elementary abelian subgroups, Quart. J. Math. 51 (2000) 169-181] which states that if G is a finite group and k is a field of characteristic p, then any k G-module is a direct summand of a module which has a filtration whose sections are induced from elementary abelian p-subgroups of G. We also prove two new theorems which are closely related to Carlson's theorem. © 2005 Elsevier Ltd. All rights reserved.
Source Title
Journal of Pure and Applied Algebra
Publisher
Elsevier BV * North - Holland
Course
Other identifiers
Book Title
Keywords
Degree Discipline
Degree Level
Degree Name
Citation
Permalink
Published Version (Please cite this version)
Collections
Language
English