Controlled dephasing in single-dot Aharonov-Bohm interferometers

Date
2007
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Physical Review B - Condensed Matter and Materials Physics
Print ISSN
1098-0121
Electronic ISSN
Publisher
Volume
75
Issue
4
Pages
045309-1 - 045309-9
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

We study the Fano effect and the visibility of the Aharonov-Bohm oscillations for a mesoscopic interferometer with an embedded quantum dot in the presence of a nearby second dot. When the electron-electron interaction between the two dots is considered the nearby dot acts as a charge detector. We compute the currents through the interferometer and detector within the Keldysh formalism and the self-energy of the nonequilibrium Green's functions is found up to the second order in the interaction strength. The current formula contains a correction to the Landauer-Büttiker formula. Its contribution to transport and dephasing is discussed. As the bias applied on the detector is increased, the amplitude of both the Fano resonance and Aharonov-Bohm oscillations are considerably reduced due to controlled dephasing. This result is explained by analyzing the behavior of the imaginary part of the interaction self-energy as a function of energy and bias. We emphasize as well the role of the ring-dot coupling. Our theoretical results are consistent with the experimental observation of Buks [Nature 391, 871 (1998)].

Course
Other identifiers
Book Title
Keywords
Citation
Published Version (Please cite this version)