Show simple item record

dc.contributor.authorYaman, H.en_US
dc.date.accessioned2016-02-08T10:11:50Z
dc.date.available2016-02-08T10:11:50Z
dc.date.issued2007en_US
dc.identifier.issn0895-4801
dc.identifier.urihttp://hdl.handle.net/11693/23309
dc.description.abstractWe study the integer knapsack cover polyhedron which is the convex hull of the set of vectors x ∈ ℤ+ n that satisfy C T x ≥ b, with C ∈ ℤ++ n and 6 ∈ ℤ++. We present some general results about the nontrivial facet-defining inequalities. Then we derive specific families of valid inequalities, namely, rounding, residual capacity, and lifted rounding inequalities, and identify cases where they define facets. We also study some known families of valid inequalities called 2-partition inequalities and improve them using sequence-independent lifting.en_US
dc.language.isoEnglishen_US
dc.source.titleSIAM Journal on Discrete Mathematicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1137/050639624en_US
dc.subjectInteger knapsack cover polyhedronen_US
dc.subjectValid inequalitiesen_US
dc.subjectSequence-independent liftingen_US
dc.subjectFacetsen_US
dc.titleThe integer knapsack cover polyhedronen_US
dc.typeArticleen_US
dc.departmentDepartment of Industrial Engineeringen_US
dc.citation.spage551en_US
dc.citation.epage572en_US
dc.citation.volumeNumber21en_US
dc.citation.issueNumber3en_US
dc.identifier.doi10.1137/050639624en_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.identifier.eissn1095-7146


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record