• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Physics
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Physics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Atomic and electronic structures of doped silicon nanowires: A first-principles study

      Thumbnail
      View / Download
      602.5 Kb
      Author(s)
      Durgun, Engin
      Akman, N.
      Ataca, C.
      Çıracı, Salim
      Date
      2007
      Source Title
      Physical Review B - Condensed Matter and Materials Physics
      Print ISSN
      1098-0121
      Volume
      76
      Issue
      24
      Pages
      245323-1 - 245323-8
      Language
      English
      Type
      Article
      Item Usage Stats
      205
      views
      236
      downloads
      Abstract
      We have investigated the atomic and electronic structures of hydrogen saturated silicon nanowires doped with impurity atoms (such as Al, Ga, C, Si, Ge, N, P, As, Te, Pt) using a first-principles plane wave method. We considered adsorption and substitution of impurity atoms at the surface and also their substitution at the core of the nanowire. In the case of adsorption to the surface, we determined the most energetic adsorption geometry among various possible adsorption sites. All impurities studied lead to nonmagnetic ground state with a significant binding energy. Impurity bands formed at high impurity concentration are metallic for group IIIA and VA elements but are semiconductor and modify the band gap for group IVA and VIA elements. While low substitutional impurity concentration leads to usual n - and p -type behaviors reminiscent of bulk Si, this behavior is absent if the impurity atom is adsorbed on the surface. It is shown that the electronic properties of silicon nanowires can be modified by doping for optoelectronic applications.
      Permalink
      http://hdl.handle.net/11693/23255
      Published Version (Please cite this version)
      http://dx.doi.org/10.1103/PhysRevB.76.245323
      Collections
      • Department of Electrical and Electronics Engineering 4011
      • Department of Physics 2550
      • Institute of Materials Science and Nanotechnology (UNAM) 2258
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy