Show simple item record

dc.contributor.authorYanar, S.en_US
dc.contributor.authorSevim, A.en_US
dc.contributor.authorBoyacioglu, B.en_US
dc.contributor.authorSaglam, M.en_US
dc.contributor.authorMukhopadhyaya, S.en_US
dc.contributor.authorChatterjee, A.en_US
dc.date.accessioned2016-02-08T10:09:59Z
dc.date.available2016-02-08T10:09:59Z
dc.date.issued2008en_US
dc.identifier.issn0749-6036
dc.identifier.urihttp://hdl.handle.net/11693/23179
dc.description.abstractThe problem of an electron interacting with longitudinal-optical (LO) phonons is investigated in an N-dimensional quantum dot with symmetric Gaussian confinement in all directions using the Rayleigh-Schrödinger perturbation theory, a variant of the canonical transformation method of Lee-Low-Pines, and the sophisticated apparatus of the Feynman-Haken path-integral technique for the entire range of the coupling parameters and the results for N = 2 and N = 3 are obtained as special cases. It is shown that the polaronic effects are quite significant for small dots with deep confining potential well and the parabolic potential is only a poor approximation of the Gaussian confinement. The Feynman-Haken path-integral technique in general gives a good upper bound to the ground state energy for all values of the system parameters and therefore is used as a benchmark for comparison between different methods. It is shown that the perturbation theory yields for the ground state polaron self-energy a simple closed-form analytic expression containing only Gamma functions and in the weak-coupling regime it provides the lowest energy because of an efficient partitioning of the Gaussian potential and the subsequent use of a mean-field kind of treatment. The polarization potential, the polaron radius and the number of virtual phonons in the polaron cloud are obtained using the Lee-Low-Pines-Huybrechts method and their variations with respect to different parameters of the system are discussed.en_US
dc.language.isoEnglishen_US
dc.source.titleSuperlattices and microstructuresen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.spmi.2007.11.006en_US
dc.subjectGaussian confinementen_US
dc.subjectPolaronic effecten_US
dc.subjectQuantum doten_US
dc.subjectGround stateen_US
dc.subjectMathematical transformationsen_US
dc.subjectPerturbation techniquesen_US
dc.subjectPhononsen_US
dc.subjectPolarizationen_US
dc.subjectPolaronsen_US
dc.subjectGaussian confinementsen_US
dc.subjectPolaronic effectsen_US
dc.subjectSemiconductor quantum dotsen_US
dc.titlePolaronic effects in a gaussian quantum doten_US
dc.typeArticleen_US
dc.departmentDepartment of Physicsen_US
dc.citation.spage208en_US
dc.citation.epage239en_US
dc.citation.volumeNumber43en_US
dc.citation.issueNumber3en_US
dc.identifier.doi10.1016/j.spmi.2007.11.006en_US
dc.publisherElsevieren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record