Two-tier tissue decomposition for histopathological image representation and classification

Date
2015
Authors
Gultekin, T.
Koyuncu, C. F.
Sokmensuer, C.
Gunduz Demir, C.
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
IEEE Transactions on Medical Imaging
Print ISSN
0278-0062
Electronic ISSN
1558-254X
Publisher
Institute of Electrical and Electronics Engineers
Volume
34
Issue
1
Pages
275 - 283
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

In digital pathology, devising effective image representations is crucial to design robust automated diagnosis systems. To this end, many studies have proposed to develop object-based representations, instead of directly using image pixels, since a histopathological image may contain a considerable amount of noise typically at the pixel-level. These previous studies mostly employ color information to define their objects, which approximately represent histological tissue components in an image, and then use the spatial distribution of these objects for image representation and classification. Thus, object definition has a direct effect on the way of representing the image, which in turn affects classification accuracies. In this paper, our aim is to design a classification system for histopathological images. Towards this end, we present a new model for effective representation of these images that will be used by the classification system. The contributions of this model are twofold. First, it introduces a new two-tier tissue decomposition method for defining a set of multityped objects in an image. Different than the previous studies, these objects are defined combining texture, shape, and size information and they may correspond to individual histological tissue components as well as local tissue subregions of different characteristics. As its second contribution, it defines a new metric, which we call dominant blob scale, to characterize the shape and size of an object with a single scalar value. Our experiments on colon tissue images reveal that this new object definition and characterization provides distinguishing representation of normal and cancerous histopathological images, which is effective to obtain more accurate classification results compared to its counterparts.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)