Show simple item record

dc.contributor.authorKoç A.en_US
dc.contributor.authorOzaktas, H. M.en_US
dc.contributor.authorCandan, C.en_US
dc.contributor.authorKutay, M. A.en_US
dc.date.accessioned2016-02-08T10:08:56Z
dc.date.available2016-02-08T10:08:56Z
dc.date.issued2008en_US
dc.identifier.issn1053-587X
dc.identifier.urihttp://hdl.handle.net/11693/23101
dc.description.abstractWe deal with the problem of efficient and accurate digital computation of the samples of the linear canonical transform (LCT) of a function, from the samples of the original function. Two approaches are presented and compared. The first is based on decomposition of the LCT into chirp multiplication, Fourier transformation, and scaling operations. The second is based on decomposition of the LCT into a fractional Fourier transform followed by scaling and chirp multiplication. Both algorithms take ∼ N log N time, where N is the time-bandwidth product of the signals. The only essential deviation from exactness arises from the approximation of a continuous Fourier transform with the discrete Fourier transform. Thus, the algorithms compute LCTs with a performance similar to that of the fast Fourier transform algorithm in computing the Fourier transform, both in terms of speed and accuracy.en_US
dc.language.isoEnglishen_US
dc.source.titleIEEE Transactions on Signal Processingen_US
dc.relation.isversionofhttp://doi.org/10.1109/TSP.2007.912890en_US
dc.subjectDiffraction integralsen_US
dc.subjectFractional Fourier transform (FRT)en_US
dc.subjectLinear canonical transform (LCT)en_US
dc.subjectTime-frequency analysisen_US
dc.subjectWigner distributionsen_US
dc.titleDigital computation of linear canonical transformsen_US
dc.typeArticleen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.citation.spage2383en_US
dc.citation.epage2394en_US
dc.citation.volumeNumber56en_US
dc.citation.issueNumber6en_US
dc.identifier.doi10.1109/TSP.2007.912890en_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.identifier.eissn1941-0476


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record