Show simple item record

dc.contributor.authorKankaya, H. E.en_US
dc.contributor.authorAkar, N.en_US
dc.date.accessioned2016-02-08T10:08:32Z
dc.date.available2016-02-08T10:08:32Z
dc.date.issued2008en_US
dc.identifier.issn1532-6349
dc.identifier.urihttp://hdl.handle.net/11693/23071
dc.description.abstractIn this paper, we study Markov fluid queues with multiple thresholds, or the so-called multi-regime feedback fluid queues. The boundary conditions are derived in terms of joint densities and for a relatively wide range of state types including repulsive and zero drift states. The ordered Schur factorization is used as a numerical engine to find the steady-state distribution of the system. The proposed method is numerically stable and accurate solution for problems with two regimes and 210 states is possible using this approach. We present numerical examples to justify the stability and validate the effectiveness of the proposed approach.en_US
dc.language.isoEnglishen_US
dc.source.titleStochastic Modelsen_US
dc.relation.isversionofhttps://doi.org/10.1080/15326340802232285en_US
dc.subjectFeedback queuesen_US
dc.subjectMarkov fluid queuesen_US
dc.subjectSchur decompositionen_US
dc.subjectPrimary 60K25en_US
dc.subject90B22en_US
dc.subjectSecondary 65F15en_US
dc.subject68M20en_US
dc.titleSolving multi-regime feedback fluid queuesen_US
dc.typeArticleen_US
dc.departmentDepartment of Electrical and Electronics Engineering
dc.citation.spage425en_US
dc.citation.epage450en_US
dc.citation.volumeNumber24en_US
dc.citation.issueNumber3en_US
dc.identifier.doi10.1080/15326340802232285en_US
dc.publisherTaylor & Francis Inc.en_US
dc.identifier.eissn1532-4214


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record