Process simulations for 3D turning using uniform and variable microgeometry PCBN tools
Date
2008Source Title
International Journal of Machining and Machinability of Materials
Print ISSN
1748-5711
Electronic ISSN
1748-572X
Publisher
Inderscience Publishers
Volume
4
Issue
1
Pages
26 - 38
Language
English
Type
ArticleItem Usage Stats
222
views
views
226
downloads
downloads
Abstract
In this paper, uniform and variable edge microgeometry design inserts are utilised and tested for 3D turning process. In 3D tool engagement with workpiece, thickness of the chip varies from a maximum equal to the feed rate (at primary cutting edge) to a minimum on the tool's corner radius (at trailing cutting edge). The ideal tool edge preparation should posses a variable configuration which has larger edge radius at the primary cutting edge than at the trailing cutting edge. Here the key parameter is the ratio of uncut chip thickness to edge radius. If a proper ratio is chosen for given cutting conditions, a variable cutting edge along the corner radius can be designed or 'engineered'. In this study, Finite Element Modelling (FEM)-based 3D process simulations are utilised to predict forces and temperatures on various uniform and variable edge microgeometry tools. Predicted forces are compared with experiments. The temperature distributions on the tool demonstrate the advantages of variable edge microgeometry design.