• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Physics
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Physics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pt-incorporated anatase TiO2 (001) surface for solar cell applications: First-principles density functional theory calculations

      Thumbnail
      View / Download
      1.1 Mb
      Author
      Mete, E.
      Uner, D.
      Gülseren, O.
      Ellialtıoǧlu, Ş.
      Date
      2009
      Source Title
      Physical Review B - Condensed Matter and Materials Physics
      Print ISSN
      1550-235X
      Publisher
      American Physical Society
      Volume
      79
      Issue
      12
      Pages
      125418-1 - 125418-15
      Language
      English
      Type
      Article
      Item Usage Stats
      150
      views
      160
      downloads
      Abstract
      First-principles density functional theory calculations were carried out to determine the low energy geometries of anatase TiO2(001) with Pt implants in the sublayers as substitutional and interstitial impurities as well as on the surface in the form of adsorbates. We investigated the effect of such a systematic Pt incorporation in the electronic structure of this surface for isolated and interacting impurities with an emphasis on the reduction in the band gap to visible region. Comprehensive calculations, for 1×1 surface, showed that Pt ions at interstitial cavities result in local segregation, forming metallic wires inside, while substitution for bulk Ti and adsorption drives four strongly dispersed impurity states from valence bands up in the gap with a narrowing of ∼1.5 eV. Hence, such a contiguous Pt incorporation drives anatase into infrared regime. Pt substitution for the surface Ti, on the other hand, metallizes the surface. Systematic trends for 2×2 surface revealed that Pt can be encapsulated inside to form stable structures as a result of strong Pt-O interactions as well as the adsorptional and substitutional cases. Dilute impurities considered for 2×2 surface models exhibit flatlike defect states driven from the valence bands narrowing the energy gap suitable to obtain visible-light responsive titania.
      Permalink
      http://hdl.handle.net/11693/22809
      Published Version (Please cite this version)
      http://dx.doi.org/10.1103/PhysRevB.79.125418
      Collections
      • Department of Physics 2299
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy