• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Tunable surface plasmon resonance on an elastomeric substrate

      Thumbnail
      View / Download
      366.0 Kb
      Author
      Olcum, Selim
      Kocabaş, Aşkın
      Ertaş, Gülay
      Atalar, Abdullah
      Aydınlı, Atilla
      Date
      2009-05
      Source Title
      Optics Express
      Electronic ISSN
      1094-4087
      Publisher
      Optical Society of American (OSA)
      Volume
      17
      Issue
      10
      Pages
      8542 - 8547
      Language
      English
      Type
      Article
      Item Usage Stats
      166
      views
      131
      downloads
      Abstract
      In this study, we demonstrate that periods of metallic gratings on elastomeric substrates can be tuned with external strain and hence are found to control the resonance condition of surface plasmon polaritons. We have excited the plasmon resonance on the elastomeric grating coated with gold and silver. The grating period is increased up to 25% by applying an external mechanical strain. The tunability of the elastomeric substrate provides the opportunity to use such gratings as efficient surface enhanced Raman spectroscopy substrates. It's been demonstrated that the Raman signal can be maximized by applying an external mechanical strain to the elastomeric grating. © 2009 Optical Society of America.
      Keywords
      Plasmons
      Raman spectroscopy
      Silver
      Surface plasmon resonance
      Efficient surface
      Elastomeric gratings
      Elastomeric substrates
      External strains
      Gold and silver
      Grating periods
      Mechanical strain
      Metallic gratings
      Plasmon resonances
      Raman signal
      Resonance condition
      Surface plasmon polaritons
      Tunability
      Substrates
      Permalink
      http://hdl.handle.net/11693/22755
      Published Version (Please cite this version)
      http://dx.doi.org/10.1364/OE.17.008542
      Collections
      • Advanced Research Laboratories (ARL) 34
      • Department of Chemistry 616
      • Department of Electrical and Electronics Engineering 3597
      • Department of Physics 2329
      • Institute of Materials Science and Nanotechnology (UNAM) 1831
      Show full item record

      Related items

      Showing items related by title, author, creator and subject.

      • Thumbnail

        Raman enhancement on a broadband meta-surface 

        Ayas S.; Güner, H.; Türker, B.; Ekiz, O. O.; Dirisaglik, F.; Okyay, Ali Kemal; Dâna, A. (American Chemical Society, 2012-07-30)
        Plasmonic metamaterials allow confinement of light to deep subwavelength dimensions, while allowing for the tailoring of dispersion and electromagnetic mode density to enhance specific photonic properties. Optical resonances ...
      • Thumbnail

        Plasmonic band gap structures for surface-enhanced Raman scattering 

        Kocabas, A.; Ertas G.; Senlik, S.S.; Aydınlı, Atilla (Optical Society of American (OSA), 2008)
        Surface-enhanced Raman Scattering (SERS) of rhodamine 6G (R6G) adsorbed on biharmonic metallic grating structures was studied. Biharmonic metallic gratings include two different grating components, one acting as a coupler ...
      • Thumbnail

        Dynamic tuning of plasmon resonance in the visible using graphene 

        Balci, S.; Balci, O.; Kakenov, N.; Atar, F. B.; Kocabas, C. (The Optical Society, 2016)
        We report active electrical tuning of plasmon resonance of silver nanoprisms (Ag NPs) in the visible spectrum. Ag NPs are placed in close proximity to graphene which leads to additional tunable loss for the plasmon resonance. ...

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy