Show simple item record

dc.contributor.authorUyar T.en_US
dc.contributor.authorNur, Y.en_US
dc.contributor.authorHacaloglu, J.en_US
dc.contributor.authorBesenbacher, F.en_US
dc.date.accessioned2016-02-08T10:04:16Z
dc.date.available2016-02-08T10:04:16Z
dc.date.issued2009en_US
dc.identifier.issn1361-6528
dc.identifier.urihttp://hdl.handle.net/11693/22749
dc.description.abstractElectrospinning of nanofibers with cyclodextrin inclusion complexes (CD-ICs) is particularly attractive since distinct properties can be obtained by combining the nanofibers with specific functions of the CD-ICs. Here we report on the electrospinning of poly(methyl methacrylate) (PMMA) nanofibers containing cyclodextrin-menthol inclusion complexes (CD-menthol-ICs). These CD-menthol-IC functionalized nanofibers were developed with the purpose of producing functional nanofibers that contain fragrances/flavors with high temperature stability, and menthol was used as a model fragrance/flavor material. The PMMA nanofibers were electrospun with CD-menthol-ICs using three type of CD: α-CD, β-CD, and γ-CD. Direct pyrolysis mass spectrometry (DP-MS) studies showed that the thermal evaporation of menthol occurred over a very high and a broad temperature range (100-355 °C) for PMMA/CDmenthol-IC nanowebs, demonstrating the complexation of menthol with the CD cavity and its high temperature stability. Furthermore, as the size of CD cavity increased in the order α-CD<β-CD<γ-CD, the thermal evolution of menthol shifted to higher temperatures, suggesting that the strength of interaction between menthol and the CD cavity is in the order γ-CD>β-CD>α-CD. © 2009 IOP Publishing Ltd.en_US
dc.language.isoEnglishen_US
dc.source.titleNanotechnologyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/0957-4484/20/12/125703en_US
dc.subjectBroad temperature rangesen_US
dc.subjectElectrospunen_US
dc.subjectFunctionalizeden_US
dc.subjectHigh-temperature stabilitiesen_US
dc.subjectHigher temperaturesen_US
dc.subjectInclusion complexesen_US
dc.subjectPolies (methylmethacrylate)en_US
dc.subjectPolymethylmethacrylateen_US
dc.subjectPyrolysis mass spectrometriesen_US
dc.subjectThermal evolutionsen_US
dc.subjectElectrospinningen_US
dc.subjectEstersen_US
dc.subjectMass spectrometryen_US
dc.subjectNanofibersen_US
dc.subjectThermal evaporationen_US
dc.subjectData storage equipmenten_US
dc.subjectcyclodextrinen_US
dc.subjectmentholen_US
dc.subjectnanofiberen_US
dc.subjectpoly(methyl methacrylate)en_US
dc.subjectmentholen_US
dc.subjectnanoparticleen_US
dc.subjectarticleen_US
dc.subjectchemical interactionen_US
dc.subjecthigh temperatureen_US
dc.subjectmass spectrometryen_US
dc.subjectpriority journalen_US
dc.subjectchemistryen_US
dc.subjectscanning electron microscopyen_US
dc.subjecttemperatureen_US
dc.subjectultrastructureen_US
dc.subjectX ray diffractionen_US
dc.subjectCyclodextrinsen_US
dc.subjectMass Spectrometryen_US
dc.subjectMentholen_US
dc.subjectMicroscopy, Electron, Scanningen_US
dc.subjectNanoparticlesen_US
dc.subjectPolymethyl Methacrylateen_US
dc.subjectTemperatureen_US
dc.subjectX-Ray Diffractionen_US
dc.titleElectrospinning of functional poly(methyl methacrylate) nanofibers containing cyclodextrin-menthol inclusion complexesen_US
dc.typeArticleen_US
dc.departmentInstitute of Materials Science and Nanotechnology
dc.citation.spage1en_US
dc.citation.epage10en_US
dc.citation.volumeNumber20en_US
dc.citation.issueNumber12en_US
dc.identifier.doi10.1088/0957-4484/20/12/125703en_US
dc.publisherInstitute of Physics Publishingen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record