Show simple item record

dc.contributor.authorNeusel, M. D.en_US
dc.contributor.authorSezer, M.en_US
dc.date.accessioned2016-02-08T10:03:37Z
dc.date.available2016-02-08T10:03:37Z
dc.date.issued2009en_US
dc.identifier.issn0933-7741
dc.identifier.urihttp://hdl.handle.net/11693/22700
dc.description.abstractLet æ : G GL(n, F) be a faithful representation of a finite group G. In this paper we study the image of the associated Noether map J G G : F[V(G)]G → F [V]G. It turns out that the image of the Noether map characterizes the ring of invariants in the sense that its integral closure Im (JG G = F [V]G. This is true without any restrictions on the group, representation, or ground field. Moreover, we show that the extension Im(J G G) ⊆ F [V]G is a finite p-root extension if the characteristic of the ground field is p. Furthermore, we show that the Noether map is surjective, if V = Fn is a projective FG-module. We apply these results and obtain upper bounds on the degrees of a minimal generating set of FVG and the Cohen-Macaulay defect of FV G. We illustrate our results with several examples. © de Gruyter 2009.en_US
dc.language.isoEnglishen_US
dc.source.titleForum Mathematicumen_US
dc.relation.isversionofhttp://dx.doi.org/10.1515/FORUM.2009.028en_US
dc.titleThe noether map ien_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematicsen_US
dc.citation.spage567en_US
dc.citation.epage578en_US
dc.citation.volumeNumber21en_US
dc.citation.issueNumber4en_US
dc.identifier.doi10.1515/FORUM.2009.028en_US
dc.publisherWalter de Gruyter GmbHen_US
dc.identifier.eissn1435-5337


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record