Show simple item record

dc.contributor.authorSaadaoui, K.en_US
dc.contributor.authorÖzgüler, A. B.en_US
dc.date.accessioned2016-02-08T10:02:38Z
dc.date.available2016-02-08T10:02:38Z
dc.date.issued2009en_US
dc.identifier.issn1480-1752
dc.identifier.urihttp://hdl.handle.net/11693/22630
dc.description.abstractIn this paper, we determine the set of all stabilizing first-order controllers that place the poles of the closed-loop system in a desired stability region. The solution is based on a generalization of the Hermite-Biehler theorem applicable to polynomials with complex coefficients and the application of a modified stabilizing gain algorithm to three subsidiary plants. The method given is also applicable to PID controllers.en_US
dc.language.isoEnglishen_US
dc.source.titleHermite–Biehler theoremen_US
dc.relation.isversionofhttps://doi.org/10.2316/Journal.201.2009.1.201-2030en_US
dc.subjectStabilizationen_US
dc.subjectFirst-order controllersen_US
dc.subjectRegional pole placementen_US
dc.subjectHermite–Biehler theoremen_US
dc.titleStabilizing first-order controllers with desired stability regionen_US
dc.typeArticleen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.citation.spage1en_US
dc.citation.epage8en_US
dc.citation.volumeNumber37en_US
dc.citation.issueNumber1en_US
dc.identifier.doi10.2316/Journal.201.2009.1.201-2030en_US
dc.publisherACTA Pressen_US
dc.identifier.eissn1925-5810


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record