Show simple item record

dc.contributor.authorSezer, M.en_US
dc.date.accessioned2016-02-08T10:02:35Z
dc.date.available2016-02-08T10:02:35Z
dc.date.issued2015en_US
dc.identifier.issn0021-8693
dc.identifier.urihttp://hdl.handle.net/11693/22625
dc.description.abstractWe consider the ring of coinvariants for a modular representation of a cyclic group of prime order p. We show that the classes of the terminal variables in the coinvariants have nilpotency degree p and that the coinvariants are a free module over the subalgebra generated by these classes. An incidental result we have is a description of a Gröbner basis for the Hilbert ideal and a decomposition of the corresponding monomial basis for the coinvariants with respect to the monomials in the terminal variables. © 2014 Elsevier Inc.en_US
dc.language.isoEnglishen_US
dc.source.titleJournal of Algebraen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jalgebra.2014.08.059en_US
dc.subjectCoinvariantsen_US
dc.subjectModular actionsen_US
dc.titleDecomposing modular coinvariantsen_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematicsen_US
dc.citation.spage87en_US
dc.citation.epage92en_US
dc.citation.volumeNumber423en_US
dc.identifier.doi10.1016/j.jalgebra.2014.08.059en_US
dc.publisherElsevieren_US
dc.identifier.eissn1090-266X


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record