Show simple item record

dc.contributor.authorBłaszak, M.en_US
dc.contributor.authorGürses, M.en_US
dc.contributor.authorZheltukhin, K.en_US
dc.date.accessioned2016-02-08T10:01:47Z
dc.date.available2016-02-08T10:01:47Z
dc.date.issued2009en_US
dc.identifier.issn1751-8113
dc.identifier.urihttp://hdl.handle.net/11693/22566
dc.description.abstractBi-presymplectic chains of 1-forms of co-rank 1 are considered. The conditions under which such chains represent some Liouville integrable systems and the conditions under which there exist related bi-Hamiltonian chains of vector fields are derived. To present the construction of bi-presymplectic chains, the notion of a dual Poisson-presymplectic pair is used, and the concept of d-compatibility of Poisson bivectors and d-compatibility of presymplectic forms is introduced. It is shown that bi-presymplectic representation of a related flow leads directly to the construction of separation coordinates in a purely algorithmic way. As an illustration, bi-presymplectic and bi-Hamiltonian chains in are considered in detail. © 2009 IOP Publishing Ltd.en_US
dc.language.isoEnglishen_US
dc.source.titleJournal of Physics A: Mathematical and Theoreticalen_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/1751-8113/42/28/285204en_US
dc.titleBi-presymplectic chains of co-rank 1 and related Liouville integrable systemsen_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematicsen_US
dc.citation.spage285204 - 1en_US
dc.citation.epage285204 - 19en_US
dc.citation.volumeNumber42en_US
dc.citation.issueNumber28en_US
dc.identifier.doi10.1088/1751-8113/42/28/285204en_US
dc.publisherInstitute of Physics Publishing Ltd.en_US
dc.identifier.eissn1751-8121


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record