Show simple item record

dc.contributor.authorFouilhoux, P.en_US
dc.contributor.authorLabbé, M.en_US
dc.contributor.authorMahjoub, A. R.en_US
dc.contributor.authorYaman, H.en_US
dc.date.accessioned2016-02-08T10:01:40Z
dc.date.available2016-02-08T10:01:40Z
dc.date.issued2009en_US
dc.identifier.issn0895-4801
dc.identifier.urihttp://hdl.handle.net/11693/22557
dc.description.abstractIn this paper, we present procedures to obtain facet-defining inequalities for the independence system polytope. These procedures are defined for inequalities which are not necessarily rank inequalities. We illustrate the use of these procedures by der iving strong valid inequalities for the acyclic induced subgraph, triangle free induced subgraph, bipartite induced subgraph, and knapsack polytopes. Finally, we derive a new family of facet-defining ineq ualities for the independence system polytope by adding a set of edges to antiwebs.en_US
dc.language.isoEnglishen_US
dc.source.titleSIAM Journal on Discrete Mathematicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1137/070695988en_US
dc.subjectIndependence system polytopeen_US
dc.subjectInteger programmingen_US
dc.subjectPolyhedral combinatoricsen_US
dc.subjectIndependence system polytopeen_US
dc.subjectLiftingen_US
dc.subjectNonrank facetsen_US
dc.titleGenerating facets for the independence systemen_US
dc.typeArticleen_US
dc.departmentDepartment of Industrial Engineeringen_US
dc.citation.spage1484en_US
dc.citation.epage1506en_US
dc.citation.volumeNumber23en_US
dc.citation.issueNumber3en_US
dc.identifier.doi10.1137/070695988en_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.identifier.eissn1095-7146


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record