Show simple item record

dc.contributor.authorKang H.en_US
dc.contributor.authorOhmura, N.en_US
dc.contributor.authorYamaguchi, T.en_US
dc.contributor.authorYoshikawa H.en_US
dc.contributor.authorKim, S.-C.en_US
dc.contributor.authorKim, E.-S.en_US
dc.date.accessioned2016-02-08T10:01:27Z
dc.date.available2016-02-08T10:01:27Z
dc.date.issued2009en_US
dc.identifier.issn0091-3286
dc.identifier.urihttp://hdl.handle.net/11693/22542
dc.description.abstractA liquid crystal panel for a video projector is often used for holographic television. However, its pixel size and pixel number are not enough for practical holographic 3-D display. Therefore, a multipanel configuration is generally used to increase the viewing window and displayed image size, and many spatial light modulators should be used in them. We propose a novel method to increase the viewing window of a holographic display system. The proposed method, which is implemented by using a mirror module and 4-f lens set, is to reconfigure the beam shape reflected by a spatial light modulator. The equipment is applied to a holographic display system, which has only a single spatial light modulator; a hologram could be displayed in a wider viewing window by the equipment than that of the conventional method. By the proposed method, the resolution of the reconfigured spatial light modulator has double resolution in the horizontal direction. Inversely, the vertical resolution is decreased. Even if the vertical resolution is decreased, a viewer could get 3-D effect because humans get more 3-D information in the horizontal direction. We have experimented using a liquid crystal on silicon (LcOS), whose resolution is 4096×2160pixels. The reconfigured resolution by the mirror module is 8192×1080pixels. From the experiments, the horizontal viewing window is almost two times wider than that without the mirror module. As a result, the hologram can be observed binocularly. © 2009 Society of Photo-Optical Instrumentation Engineers.en_US
dc.language.isoEnglishen_US
dc.source.titleOptical Engineeringen_US
dc.relation.isversionofhttp://dx.doi.org/10.1117/1.3180869en_US
dc.subject4-f lens systemen_US
dc.subjectFresnel hologramen_US
dc.subjectholographic displayen_US
dc.subjectmirror moduleen_US
dc.subjectviewing windowen_US
dc.subject3-D displaysen_US
dc.subject3D informationen_US
dc.subjectBeam shapesen_US
dc.subjectConventional methodsen_US
dc.subjectFresnel hologramsen_US
dc.subjectLens systemsen_US
dc.subjectLiquid crystal on siliconen_US
dc.subjectLiquid-crystal panelsen_US
dc.subjectPixel sizeen_US
dc.subjectSpatial light modulatorsen_US
dc.subjectVertical resolutionen_US
dc.subjectVideo projectorsen_US
dc.subjectViewing windowsen_US
dc.subjectHologramsen_US
dc.subjectLight modulationen_US
dc.subjectLight modulatorsen_US
dc.subjectLiquid crystalsen_US
dc.subjectLithographyen_US
dc.subjectMirrorsen_US
dc.subjectPixelsen_US
dc.subjectThree dimensionalen_US
dc.subjectHolographic displaysen_US
dc.titleMethod to enlarge the hologram viewing window using a mirror moduleen_US
dc.typeArticleen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.citation.volumeNumber48en_US
dc.citation.issueNumber7en_US
dc.identifier.doi10.1117/1.3180869en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record