Show simple item record

dc.contributor.authorSezer, M.en_US
dc.date.accessioned2016-02-08T10:01:27Z
dc.date.available2016-02-08T10:01:27Z
dc.date.issued2009en_US
dc.identifier.issn0021-8693
dc.identifier.urihttp://hdl.handle.net/11693/22541
dc.description.abstractWe consider a finite dimensional modular representation V of a cyclic group of prime order p. We show that two points in V that are in different orbits can be separated by a homogeneous invariant polynomial that has degree one or p and that involves variables from at most two summands in the dual representation. Simultaneously, we describe an explicit construction for a separating set consisting of polynomials with these properties. © 2009 Elsevier Inc. All rights reserved.en_US
dc.language.isoEnglishen_US
dc.source.titleJournal of Algebraen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jalgebra.2009.07.011en_US
dc.subjectModular groupsen_US
dc.subjectSeparating invariantsen_US
dc.titleConstructing modular separating invariantsen_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematicsen_US
dc.citation.spage4099en_US
dc.citation.epage4104en_US
dc.citation.volumeNumber322en_US
dc.citation.issueNumber11en_US
dc.identifier.doi10.1016/j.jalgebra.2009.07.011en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record