Show simple item record

dc.contributor.authorHambleton, Ianen_US
dc.contributor.authorÜnlü, Özgünen_US
dc.date.accessioned2016-02-08T09:58:23Z
dc.date.available2016-02-08T09:58:23Z
dc.date.issued2010en_US
dc.identifier.issn0002-9947
dc.identifier.urihttp://hdl.handle.net/11693/22307
dc.description.abstractLet p be an odd prime. We construct a non-abelian extension G of S 1 by Z/p × Z/p, and prove that any finite subgroup of G acts freely and smoothly on S2p-1 × S2p-1. In particular, for each odd prime p we obtain free smooth actions of infinitely many non-metacyclic rank two p-groups on S2p-1 × S2p-1. These results arise from a general approach to the existence problem for finite group actions on products of equidimensional spheres.en_US
dc.language.isoEnglishen_US
dc.source.titleTransactions of the American Mathematical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1090/S0002-9947-09-05039-9en_US
dc.titleFree actions of finite groups on Sn × Snen_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematicsen_US
dc.citation.spage3289en_US
dc.citation.epage3317en_US
dc.citation.volumeNumber362en_US
dc.citation.issueNumber6en_US
dc.identifier.doi10.1090/S0002-9947-09-05039-9en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record