A modified material model for the finite element simulation of machining titanium alloy Ti-6Al-4V

Date
2010
Authors
Karpat, Y.
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Machining Science and Technology
Print ISSN
1091-0344
Electronic ISSN
1532-2483
Publisher
Taylor & Francis
Volume
14
Issue
3
Pages
390 - 410
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Because of their desirable properties, such as high strength to weight ratio and corrosion resistance, titanium alloys are commonly employed in the aerospace and medical device industries. Titanium alloys are known to be difficult to machine, so the selection of cutting conditions with minimal experimental effort is important for manufacturers. Finite element modeling, which is an indispensable tool to understand the mechanics of machining, can also be utilized as an alternative method of process design as long as the finite element simulation input parameters are well defined. Developing a modified material model for titanium alloy Ti-6Al-4V by considering the relationships between strain, strain rate and temperature is the subject of this study. The flow softening behavior of the material at high strains is also examined. The influences of the material model parameters on the finite element simulation outputs are investigated. The finite element simulation results are found to be in agreement with the data available in the literature.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)