• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Physics
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Physics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Functionalization of BN honeycomb structure by adsorption and substitution of foreign atoms

      Thumbnail
      View / Download
      2.0 Mb
      Author
      Ataca, C.
      Çıracı, Salim
      Date
      2010
      Source Title
      Physical Review B - Condensed Matter and Materials Physics
      Print ISSN
      1098-0121
      Volume
      82
      Issue
      16
      Pages
      165402-1 - 165402-8
      Language
      English
      Type
      Article
      Item Usage Stats
      126
      views
      133
      downloads
      Abstract
      We carried out first-principles calculations within density-functional theory to investigate the structural, electronic, and magnetic properties of boron-nitride (BN) honeycomb structure functionalized by adatom adsorption, as well as by the substitution of foreign atoms for B and N atoms. For periodic high-density coverage, most of 3d transition metal atoms and some of group 3A, 4A, and 6A elements are adsorbed with significant binding energy and modify the electronic structure of bare BN monolayer. While bare BN monolayer is nonmagnetic, wide band-gap semiconductor, at high coverage of specific adatoms it can achieve magnetic metallic, even half-metallic ground states. At low coverage, the bands associated with adsorbed atoms are flat and the band structure of parent BN is not affected significantly. Therefore, adatoms and substitution of foreign atoms at low coverage are taken to be the representative of impurity atoms yielding localized states in the band gap and resonance states in the band continua. Notably, the substitution of C for B and N yield donorlike and acceptorlike magnetic states in the band gap. Localized impurity states occurring in the gap give rise to interesting properties for electronic and optical application of the single-layer BN honeycomb structure. © 2010 The American Physical Society.
      Permalink
      http://hdl.handle.net/11693/22204
      Published Version (Please cite this version)
      http://dx.doi.org/10.1103/PhysRevB.82.165402
      Collections
      • Department of Physics 2299
      • Institute of Materials Science and Nanotechnology (UNAM) 1775
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy