Show simple item record

dc.contributor.authorOdaci, D.en_US
dc.contributor.authorKahveci, M.U.en_US
dc.contributor.authorSahkulubey, E.L.en_US
dc.contributor.authorOzdemir, C.en_US
dc.contributor.authorUyar, Tameren_US
dc.contributor.authorTimur, S.en_US
dc.contributor.authorYagci Y.en_US
dc.date.accessioned2016-02-08T09:56:47Z
dc.date.available2016-02-08T09:56:47Z
dc.date.issued2010en_US
dc.identifier.issn1878-562X
dc.identifier.urihttp://hdl.handle.net/11693/22196
dc.description.abstractIn situ synthesis of poly(ethylene glycol) (PEG) hydrogels containing gold nanoparticles(AuNPs) and glucose oxidase (GOx) enzyme by photo-induced electron transfer process was reported here and applied in electrochemical glucose biosensing as the model system. Newly designed bionanocomposite matrix by simple one-step fabrication offered a good contact between the active site of the enzyme and AuNPs inside the network that caused the promotion in the electron transfer properties that was evidenced by cyclic voltammetryas well as higher amperometric biosensing responses in comparing with response signals obtained from the matrix without AuNPs. As well as some parameters important in the optimization studies such as optimum pH, enzyme loading and AuNP amount, the analytical characteristics of the biosensor (AuNP/GOx) were examined by the monitoring of chronoamperometric response due to the oxygen consumption through the enzymatic reaction at − 0.7 V under optimized conditions at sodium acetate buffer (50 mM, pH 4.0) and the linear graph was obtained in the range of 0.1–1.0 mM glucose. The detection limit (LOD) of the biosensor was calculated as 0.06 mM by using the signal to noise ratio of 3. Moreover, the presence of AuNPs was visualized by TEM. Finally, the biosensor was applied for glucose analysis for some beverages and obtained data were compared with HPLC as the reference method to test the possible matrix effect due to the nature of the samples.en_US
dc.language.isoEnglishen_US
dc.source.titleBioelectrochemistryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.bioelechem.2010.05.001en_US
dc.subjectBionanocompositeen_US
dc.subjectBiosensoren_US
dc.subjectGold nanoparticlesen_US
dc.subjectHydrogelen_US
dc.subjectPhotopolymerizationen_US
dc.subjectActive siteen_US
dc.subjectAmperometricen_US
dc.subjectBionanocompositeen_US
dc.subjectBiosensingen_US
dc.subjectBiosensing platformsen_US
dc.subjectChronoamperometric responseen_US
dc.subjectDetection limitsen_US
dc.subjectElectron transferen_US
dc.subjectEnzymatic reactionen_US
dc.subjectEnzyme loadingen_US
dc.subjectGlucose analysisen_US
dc.subjectGold nanoparticleen_US
dc.subjectGold Nanoparticlesen_US
dc.subjectIn-situ synthesisen_US
dc.subjectLinear graphen_US
dc.subjectmatrixen_US
dc.subjectMatrix effectsen_US
dc.subjectModel studyen_US
dc.subjectModel systemen_US
dc.subjectOptimization studiesen_US
dc.subjectOptimized conditionsen_US
dc.subjectOptimum pHen_US
dc.subjectOxygen consumptionen_US
dc.subjectPhoto-induced electron transferen_US
dc.subjectReference methoden_US
dc.subjectResponse signalen_US
dc.subjectSodium-acetate bufferen_US
dc.subjectTEMen_US
dc.subjectBeveragesen_US
dc.subjectCyclic voltammetryen_US
dc.subjectElectron transitionsen_US
dc.subjectEnzymesen_US
dc.subjectEthyleneen_US
dc.subjectEthylene glycolen_US
dc.subjectGlucoseen_US
dc.subjectGlucose oxidaseen_US
dc.subjectGlucose sensorsen_US
dc.subjectGolden_US
dc.subjectHydrogelsen_US
dc.subjectMatrix algebraen_US
dc.subjectNanoparticlesen_US
dc.subjectOptimizationen_US
dc.subjectOxygenen_US
dc.subjectPhotopolymerizationen_US
dc.subjectPolyethylene glycolsen_US
dc.subjectPolyethylene oxidesen_US
dc.subjectSignal to noise ratioen_US
dc.subjectSodiumen_US
dc.subjectSynthesis (chemical)en_US
dc.subjectBiosensorsen_US
dc.subjectgold nanoparticleen_US
dc.subjectmacrogolen_US
dc.subjectnanocompositeen_US
dc.subjectoxygenen_US
dc.subjectamperometryen_US
dc.subjectarticleen_US
dc.subjectbiosensoren_US
dc.subjectcalculationen_US
dc.subjectcross linkingen_US
dc.subjectcyclic potentiometryen_US
dc.subjectencapsulationen_US
dc.subjectenzyme active siteen_US
dc.subjectenzyme mechanismen_US
dc.subjecthigh performance liquid chromatographyen_US
dc.subjecthydrogelen_US
dc.subjectmonitoringen_US
dc.subjectoxygen consumptionen_US
dc.subjectparticle sizeen_US
dc.subjectpHen_US
dc.subjectpolymerizationen_US
dc.subjectsignal noise ratioen_US
dc.subjectsynthesisen_US
dc.subjecttransmission electron microscopyen_US
dc.subjectBeveragesen_US
dc.subjectBiosensing Techniquesen_US
dc.subjectBuffersen_US
dc.subjectChromatography, High Pressure Liquiden_US
dc.subjectElectrochemistryen_US
dc.subjectElectrodesen_US
dc.subjectGlucoseen_US
dc.subjectGlucose Oxidaseen_US
dc.subjectGolden_US
dc.subjectHydrogen-Ion Concentrationen_US
dc.subjectLimit of Detectionen_US
dc.subjectMetal Nanoparticlesen_US
dc.subjectMicroscopy, Electron, Transmissionen_US
dc.subjectNanocompositesen_US
dc.subjectOxidation-Reductionen_US
dc.subjectPolyethylene Glycolsen_US
dc.subjectSodium Acetateen_US
dc.titleIn situ synthesis of biomolecule encapsulated gold-cross-linked poly(ethylene glycol) nanocomposite as biosensing platform: A model studyen_US
dc.typeArticleen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.citation.spage211en_US
dc.citation.epage217en_US
dc.citation.volumeNumber79en_US
dc.citation.issueNumber2en_US
dc.identifier.doi10.1016/j.bioelechem.2010.05.001en_US
dc.publisherElsevier BVen_US
dc.contributor.bilkentauthorUyar, Tamer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record