Show simple item record

dc.contributor.authorGoktas, M.en_US
dc.contributor.authorCinar, G.en_US
dc.contributor.authorOrujalipoor, I.en_US
dc.contributor.authorIde, S.en_US
dc.contributor.authorTekinay, A. B.en_US
dc.contributor.authorGuler, M. O.en_US
dc.date.accessioned2016-02-08T09:55:42Z
dc.date.available2016-02-08T09:55:42Z
dc.date.issued2015en_US
dc.identifier.issn1525-7797
dc.identifier.urihttp://hdl.handle.net/11693/22114
dc.description.abstract(Figure Presented). Natural extracellular matrix (ECM) consists of complex signals interacting with each other to organize cellular behavior and responses. This sophisticated microenvironment can be mimicked by advanced materials presenting essential biochemical and physical properties in a synergistic manner. In this work, we developed a facile fabrication method for a novel nanofibrous self-assembled peptide amphiphile (PA) and poly(ethylene glycol) (PEG) composite hydrogel system with independently tunable biochemical, mechanical, and physical cues without any chemical modification of polymer backbone or additional polymer processing techniques to create synthetic ECM analogues. This approach allows noninteracting modification of multiple niche properties (e.g., bioactive ligands, stiffness, porosity), since no covalent conjugation method was used to modify PEG monomers for incorporation of bioactivity and porosity. Combining the self-assembled PA nanofibers with a chemically cross-linked polymer network simply by facile mixing followed by photopolymerization resulted in the formation of porous bioactive hydrogel systems. The resulting porous network can be functionalized with desired bioactive signaling epitopes by simply altering the amino acid sequence of the self-assembling PA molecule. In addition, the mechanical properties of the composite system can be precisely controlled by changing the PEG concentration. Therefore, nanofibrous self-assembled PA/PEG composite hydrogels reported in this work can provide new opportunities as versatile synthetic mimics of ECM with independently tunable biological and mechanical properties for tissue engineering and regenerative medicine applications. In addition, such systems could provide useful tools for investigation of how complex niche cues influence cellular behavior and tissue formation both in two-dimensional and three-dimensional platforms.en_US
dc.language.isoEnglishen_US
dc.source.titleBiomacromoleculesen_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/acs.biomac.5b00041en_US
dc.subjectAmino acidsen_US
dc.subjectAmphiphilesen_US
dc.subjectBiomechanicsen_US
dc.subjectBiomimeticsen_US
dc.subjectChemical modificationen_US
dc.subjectComplex networksen_US
dc.subjectCrosslinkingen_US
dc.subjectEnzyme activityen_US
dc.subjectMechanical propertiesen_US
dc.subjectMobile securityen_US
dc.subjectNanofibersen_US
dc.subjectPeptidesen_US
dc.subjectPhotopolymerizationen_US
dc.subjectPolyethylene glycolsen_US
dc.subjectPorosityen_US
dc.subjectTissueen_US
dc.subjectTissue engineeringen_US
dc.subjectAmino acid sequenceen_US
dc.subjectBioactive hydrogelsen_US
dc.subjectComposite hydrogelsen_US
dc.subjectCross-linked polymersen_US
dc.subjectExtracellular matricesen_US
dc.subjectModification of polymersen_US
dc.subjectRegenerative medicineen_US
dc.subjectSelf-assembled peptidesen_US
dc.subjectHydrogelsen_US
dc.subjectAmphophileen_US
dc.subjectMacrogolen_US
dc.subjectPeptide amphiphileen_US
dc.subjectUnclassified drugen_US
dc.subjectBiomimetic materialen_US
dc.subjectHydrogelen_US
dc.subjectMacrogol derivativeen_US
dc.subjectNanofiberen_US
dc.subjectPeptideen_US
dc.subjectProtein aggregateen_US
dc.subjectSurfactanten_US
dc.subjectAmino acid sequenceen_US
dc.subjectArticleen_US
dc.subjectCell functionen_US
dc.subjectCell viabilityen_US
dc.subjectControlled studyen_US
dc.subjectExtracellular matrixen_US
dc.subjectGene expressionen_US
dc.subjectHydrogelen_US
dc.subjectMicroenvironmenten_US
dc.subjectPorosityen_US
dc.subjectPriority journalen_US
dc.subjectRegenerative medicineen_US
dc.subjectSynthesisen_US
dc.subjectTissue engineeringen_US
dc.subjectChemistryen_US
dc.subjectExtracellular matrixen_US
dc.subjectHumanen_US
dc.subjectHydrogelen_US
dc.subjectSynthesisen_US
dc.subjectTumor cell lineen_US
dc.subjectTumor microenvironmenten_US
dc.subjectBiomimetic Materialsen_US
dc.subjectCell Line, Tumoren_US
dc.subjectCellular Microenvironmenten_US
dc.subjectExtracellular Matrixen_US
dc.subjectHumansen_US
dc.subjectHydrogelsen_US
dc.subjectNanofibersen_US
dc.subjectPeptidesen_US
dc.subjectPolyethylene Glycolsen_US
dc.subjectProtein Aggregatesen_US
dc.subjectSurface-Active Agentsen_US
dc.titleSelf-assembled peptide amphiphile nanofibers and PEG composite hydrogels as tunable ECM mimetic microenvironmenten_US
dc.typeArticleen_US
dc.departmentInstitute of Materials Science and Nanotechnologyen_US
dc.departmentNanotechnology Research Centeren_US
dc.citation.spage1247en_US
dc.citation.epage1258en_US
dc.citation.volumeNumber16en_US
dc.citation.issueNumber4en_US
dc.identifier.doi10.1021/acs.biomac.5b00041en_US
dc.publisherAmerican Chemical Societyen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record