Show simple item record

dc.contributor.authorBarker, L.en_US
dc.date.accessioned2016-02-08T09:55:01Z
dc.date.available2016-02-08T09:55:01Z
dc.date.issued2011en_US
dc.identifier.issn0092-7872
dc.identifier.urihttp://hdl.handle.net/11693/22066
dc.description.abstractTom Dieck introduced a commutative triangle whereby the exponential morphism from the Burnside functor to the unit functor is factorized through the real representation functor. Tornehave introduced a p-adic variant of the exponential morphism. His construction involves real representations that are not well defined up to isomorphism. To obtain a well defined commutative triangle, we introduce the orientation functor, a quotient of the real representation functor. © Taylor & Francis Group, LLC.en_US
dc.language.isoEnglishen_US
dc.source.titleCommunications in Algebraen_US
dc.relation.isversionofhttp://dx.doi.org/10.1080/00927870903571855en_US
dc.subjectBurnside functoren_US
dc.subjectOrientation functoren_US
dc.subjectUnit functoren_US
dc.subjectZombie moduleen_US
dc.subjectPrimary 19A22en_US
dc.subjectSecondary 20C15en_US
dc.titleTornehave morphisms I: resurrecting the virtual permutation sets annihilated by linearizationen_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematics
dc.citation.spage355en_US
dc.citation.epage395en_US
dc.citation.volumeNumber39en_US
dc.citation.issueNumber1en_US
dc.identifier.doi10.1080/00927870903571855en_US
dc.publisherTaylor & Francisen_US
dc.identifier.eissn1532-4125


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record