Show simple item record

dc.contributor.authorBarker, L.en_US
dc.date.accessioned2016-02-08T09:54:34Z
dc.date.available2016-02-08T09:54:34Z
dc.date.issued2016en_US
dc.identifier.issn0021-8693
dc.identifier.urihttp://hdl.handle.net/11693/22036
dc.description.abstractFor a suitable small category F of homomorphisms between finite groups, we introduce two subcategories of the biset category, namely, the deflation Mackey category MF← and the inflation Mackey category MF→. Let G be the subcategory of F consisting of the injective homomorphisms. We shall show that, for a field K of characteristic zero, the K-linear category KMG=KMG←=KMG→ has a semisimplicity property and, in particular, every block of KMG owns a unique simple functor up to isomorphism. On the other hand, we shall show that, when F is equivalent to the category of finite groups, the K-linear categories KMF← and KMF→ each have a unique block. © 2015 Elsevier Inc.en_US
dc.language.isoEnglishen_US
dc.source.titleJournal of Algebraen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jalgebra.2015.09.002en_US
dc.subjectBiset categoryen_US
dc.subjectBlock of a linear categoryen_US
dc.subjectLocally semisimpleen_US
dc.subjectMackey systemen_US
dc.titleBlocks of Mackey categoriesen_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematicsen_US
dc.citation.spage34en_US
dc.citation.epage57en_US
dc.citation.volumeNumber446en_US
dc.identifier.doi10.1016/j.jalgebra.2015.09.002en_US
dc.publisherElsevieren_US
dc.identifier.eissn1090-266X


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record