Show simple item record

dc.contributor.authorKokabi, A.en_US
dc.contributor.authorHosseini, M.en_US
dc.contributor.authorSaeedi, S.en_US
dc.contributor.authorMoftakharzadeh, A.en_US
dc.contributor.authorVesaghi, M.A.en_US
dc.contributor.authorFardmanesh, M.en_US
dc.date.accessioned2016-02-08T09:53:38Z
dc.date.available2016-02-08T09:53:38Z
dc.date.issued2011en_US
dc.identifier.issn17500443
dc.identifier.urihttp://hdl.handle.net/11693/21964
dc.description.abstractThe infrared range optical absorption mechanism of carbon-copper composite thin layer coated on the diamond-like carbon buffer layer has been investigated. By consideration of weak interactions between copper nanoparticles in their network, optical absorption is modelled using their coherent dipole behaviour induced by the electromagnetic radiation. The copper nanoparticles in the bulk of carbon are assumed as a chain of plasmonic dipoles, which have coupling resonance. Considering nearest neighbour interactions for this metallic nanoparticles, surface plasmon resonance frequency (ω 0) and coupled plasmon resonance frequency (ω 1) have been computed. The damping rate against wavelength is derived, which leads to the derivation of the optical absorption spectrum in terms of ω 0 and ω 1. The dependency of the absorption peaks to the particle size and the particle mean spacing is also investigated. The absorption spectrum is measured for different Cu-C thin films with various Cu particle size and spacing. The experimental results of absorption are compared with the obtained analytical ones. © 2011 The Institution of Engineering and Technology.en_US
dc.language.isoEnglishen_US
dc.source.titleMicro and Nano Lettersen_US
dc.relation.isversionofhttp://dx.doi.org/10.1049/mnl.2011.0014en_US
dc.subjectAbsorption peaksen_US
dc.subjectChain modelsen_US
dc.subjectCopper nanoparticlesen_US
dc.subjectCoupled plasmonen_US
dc.subjectCoupling resonanceen_US
dc.subjectDamping rateen_US
dc.subjectDiamond-like carbonen_US
dc.subjectElectromagnetic radiationen_US
dc.subjectInfrared rangeen_US
dc.subjectMetallic nanoparticlesen_US
dc.subjectNearest-neighbour interactionsen_US
dc.subjectOptical absorptionen_US
dc.subjectOptical absorption spectrumen_US
dc.subjectPlasmonicen_US
dc.subjectSurface plasmon resonance frequencyen_US
dc.subjectThin layersen_US
dc.subjectWeak interactionsen_US
dc.subjectAbsorptionen_US
dc.subjectAbsorption spectraen_US
dc.subjectCopperen_US
dc.subjectElectromagnetic wavesen_US
dc.subjectLight absorptionen_US
dc.subjectNanocomposite filmsen_US
dc.subjectNanocompositesen_US
dc.subjectNanoparticlesen_US
dc.subjectNatural frequenciesen_US
dc.subjectPlasmonsen_US
dc.subjectSurface plasmon resonanceen_US
dc.subjectThin filmsen_US
dc.subjectAbsorption spectroscopyen_US
dc.subjectcarbonen_US
dc.subjectcopperen_US
dc.subjectnanocompositeen_US
dc.subjectabsorption spectroscopyen_US
dc.subjectarticleen_US
dc.subjectdipoleen_US
dc.subjectelectromagnetic radiationen_US
dc.subjectnonhumanen_US
dc.subjectparticle sizeen_US
dc.subjectsurface plasmon resonanceen_US
dc.subjectterahertz spectroscopyen_US
dc.titleCompound Hertzian chain model for copper-carbon nanocomposites' absorption spectrumen_US
dc.typeArticleen_US
dc.departmentDepartment of Electrical and Electronics Engineering
dc.citation.spage277en_US
dc.citation.epage279en_US
dc.citation.volumeNumber6en_US
dc.citation.issueNumber4en_US
dc.identifier.doi10.1049/mnl.2011.0014en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record