Show simple item record

dc.contributor.authorJesorka, A.en_US
dc.contributor.authorStepanyants, N.en_US
dc.contributor.authorZhang H.en_US
dc.contributor.authorOrtmen, B.en_US
dc.contributor.authorHakonen, B.en_US
dc.contributor.authorOrwar O.en_US
dc.date.accessioned2016-02-08T09:53:25Z
dc.date.available2016-02-08T09:53:25Z
dc.date.issued2011en_US
dc.identifier.issn17542189
dc.identifier.urihttp://hdl.handle.net/11693/21946
dc.description.abstractWe describe micromanipulation and microinjection procedures for the fabrication of soft-matter networks consisting of lipid bilayer nanotubes and surface-immobilized vesicles. These biomimetic membrane systems feature unique structural flexibility and expandability and, unlike solid-state microfluidic and nanofluidic devices prepared by top-down fabrication, they allow network designs with dynamic control over individual containers and interconnecting conduits. The fabrication is founded on self-assembly of phospholipid molecules, followed by micromanipulation operations, such as membrane electroporation and microinjection, to effect shape transformations of the membrane and create a series of interconnected compartments. Size and geometry of the network can be chosen according to its desired function. Membrane composition is controlled mainly during the self-assembly step, whereas the interior contents of individual containers is defined through a sequence of microneedle injections. Networks cannot be fabricated with other currently available methods of giant unilamellar vesicle preparation (large unilamellar vesicle fusion or electroformation). Described in detail are also three transport modes, which are suitable for moving water-soluble or membrane-bound small molecules, polymers, DNA, proteins and nanoparticles within the networks. The fabrication protocol requires ∼90 min, provided all necessary preparations are made in advance. The transport studies require an additional 60-120 min, depending on the transport regime. © 2011 Nature America, Inc. All rights reserved.en_US
dc.language.isoEnglishen_US
dc.source.titleNature Protocolsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nprot.2011.321en_US
dc.subjectDNAen_US
dc.subjectnanoparticleen_US
dc.subjectnanotubeen_US
dc.subjectpolymeren_US
dc.subjectproteinen_US
dc.subjectarticleen_US
dc.subjectartificial membraneen_US
dc.subjectbiomimeticsen_US
dc.subjectelectroporationen_US
dc.subjectimmobilizationen_US
dc.subjection transporten_US
dc.subjectlipid bilayeren_US
dc.subjectmembrane componenten_US
dc.subjectmembrane structureen_US
dc.subjectmethodologyen_US
dc.subjectmicroinjectionen_US
dc.subjectmicromanipulationen_US
dc.subjectmolecular dynamicsen_US
dc.subjectnanofabricationen_US
dc.subjectphospholipid vesicleen_US
dc.subjectpriority journalen_US
dc.subjectsurface propertyen_US
dc.subjecttransport kineticsen_US
dc.subjectBiological Transporten_US
dc.subjectBiomimeticsen_US
dc.subjectElectroporationen_US
dc.subjectLipid Bilayersen_US
dc.subjectLipidsen_US
dc.subjectMicroinjectionsen_US
dc.subjectMicromanipulationen_US
dc.subjectNanoparticlesen_US
dc.subjectNanotubesen_US
dc.subjectSoybeansen_US
dc.titleGeneration of phospholipid vesicle-nanotube networks and transport of molecules thereinen_US
dc.typeArticleen_US
dc.departmentDepartment of Molecular Biology and Genetics
dc.citation.spage791en_US
dc.citation.epage805en_US
dc.citation.volumeNumber6en_US
dc.citation.issueNumber6en_US
dc.identifier.doi10.1038/nprot.2011.321en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record