Show simple item record

dc.contributor.authorOzgit Akgun, C.en_US
dc.contributor.authorKayaci, F.en_US
dc.contributor.authorVempati S.en_US
dc.contributor.authorHaider A.en_US
dc.contributor.authorCelebioglu A.en_US
dc.contributor.authorGoldenberg, E.en_US
dc.contributor.authorKizir S.en_US
dc.contributor.authorUyar, Tameren_US
dc.contributor.authorBıyıklı, Necmien_US
dc.date.accessioned2016-02-08T09:52:16Z
dc.date.available2016-02-08T09:52:16Z
dc.date.issued2015en_US
dc.identifier.issn2050-7534
dc.identifier.urihttp://hdl.handle.net/11693/21870
dc.description.abstractHere we demonstrate the combination of electrospinning and hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD) processes by fabricating flexible polymer-GaN organic-inorganic core-shell nanofibers at a processing temperature much lower than that needed for the preparation of conventional GaN ceramic nanofibers. Polymer-GaN organic-inorganic core-shell nanofibers fabricated by the HCPA-ALD of GaN on electrospun polymeric (nylon 6,6) nanofibers at 200 °C were characterized in detail using electron microscopy, energy dispersive X-ray analysis, selected area electron diffraction, X-ray diffraction, X-ray photoelectron spectroscopy, photoluminescence measurements, and dynamic mechanical analysis. Although transmission electron microscopy studies indicated that the process parameters should be further optimized for obtaining ultimate uniformity and conformality on these high surface area 3D substrates, the HCPA-ALD process resulted in a ∼28 nm thick polycrystalline wurtzite GaN layer on polymeric nanofibers of an average fiber diameter of ∼70 nm. Having a flexible polymeric core and low processing temperature, these core-shell semiconducting nanofibers might have the potential to substitute brittle ceramic GaN nanofibers, which have already been shown to be high performance materials for various electronic and optoelectronic applications.en_US
dc.language.isoEnglishen_US
dc.source.titleJournal of Materials Chemistry Cen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/c5tc00343aen_US
dc.subjectAtomic layer depositionen_US
dc.subjectCathodesen_US
dc.subjectCeramic materialsen_US
dc.subjectDepositionen_US
dc.subjectDynamic mechanical analysisen_US
dc.subjectElectrodesen_US
dc.subjectElectron diffractionen_US
dc.subjectElectron microscopyen_US
dc.subjectElectron sourcesen_US
dc.subjectElectrospinningen_US
dc.subjectEnergy dispersive X ray analysisen_US
dc.subjectGallium nitrideen_US
dc.subjectNanofibersen_US
dc.subjectPolymersen_US
dc.subjectProcessingen_US
dc.subjectPulsed laser depositionen_US
dc.subjectShells (structures)en_US
dc.subjectSpinning (fibers)en_US
dc.subjectTemperatureen_US
dc.subjectTransmission electron microscopyen_US
dc.subjectX ray analysisen_US
dc.subjectX ray diffractionen_US
dc.subjectZinc sulfideen_US
dc.subjectAverage fiber diametersen_US
dc.subjectHigh performance materialen_US
dc.subjectLow processing temperatureen_US
dc.subjectOptoelectronic applicationsen_US
dc.subjectPhotoluminescence measurementsen_US
dc.subjectPolycrystalline wurtziteen_US
dc.subjectProcessing temperatureen_US
dc.subjectSelected area electron diffractionen_US
dc.subjectX ray photoelectron spectroscopyen_US
dc.titleFabrication of flexible polymer–GaN core–shell nanofibers by the combination of electrospinning and hollow cathode plasma-assisted atomic layer depositionen_US
dc.typeArticleen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.citation.spage5199en_US
dc.citation.epage5206en_US
dc.citation.volumeNumber3en_US
dc.citation.issueNumber20en_US
dc.identifier.doi10.1039/c5tc00343aen_US
dc.publisherRoyal Society of Chemistryen_US
dc.contributor.bilkentauthorUyar, Tamer
dc.contributor.bilkentauthorBıyıklı, Necmi


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record