Show simple item record

dc.contributor.authorOlcum, S.en_US
dc.contributor.authorYamaner F. Y.en_US
dc.contributor.authorBozkurt, A.en_US
dc.contributor.authorAtalar, Abdullahen_US
dc.date.accessioned2016-02-08T09:50:31Z
dc.date.available2016-02-08T09:50:31Z
dc.date.issued2011en_US
dc.identifier.issn0885-3010
dc.identifier.urihttp://hdl.handle.net/11693/21738
dc.description.abstractCapacitive micromachined ultrasonic transducers (CMUTs) have been introduced as a promising technology for ultrasound imaging and therapeutic ultrasound applications which require high transmitted pressures for increased penetration, high signal-to-noise ratio, and fast heating. However, output power limitation of CMUTs compared with piezoelectrics has been a major drawback. In this work, we show that the output pressure of CMUTs can be significantly increased by deep-collapse operation, which utilizes an electrical pulse excitation much higher than the collapse voltage. We extend the analyses made for CMUTs working in the conventional (uncollapsed) region to the collapsed region and experimentally verify the findings. The static deflection profile of a collapsed membrane is calculated by an analytical approach within 0.6% error when compared with static, electromechanical finite element method (FEM) simulations. The electrical and mechanical restoring forces acting on a collapsed membrane are calculated. It is demonstrated that the stored mechanical energy and the electrical energy increase nonlinearly with increasing pulse amplitude if the membrane has a full-coverage top electrode. Utilizing higher restoring and electrical forces in the deep-collapsed region, we measure 3.5 MPa peak-to-peak pressure centered at 6.8 MHz with a 106% fractional bandwidth at the surface of the transducer with a collapse voltage of 35 V, when the pulse amplitude is 160 V. The experimental results are verified using transient FEM simulations.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK)en_US
dc.language.isoEnglishen_US
dc.source.titleIEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Controlen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/TUFFC.2011.2104en_US
dc.subjectAnalytical approachen_US
dc.subjectCapacitive micromachined ultrasonic transduceren_US
dc.subjectCollapse voltageen_US
dc.subjectElectrical energyen_US
dc.subjectElectrical forceen_US
dc.subjectElectrical pulse excitationen_US
dc.subjectFEM simulationsen_US
dc.subjectFinite element method simulationen_US
dc.subjectFractional bandwidthsen_US
dc.subjectHigh signal-to-noise ratioen_US
dc.subjectMechanical energiesen_US
dc.subjectOutput poweren_US
dc.subjectPiezoelectricsen_US
dc.subjectPulse amplitudeen_US
dc.subjectRestoring forcesen_US
dc.subjectStatic deflectionsen_US
dc.subjectTherapeutic ultrasounden_US
dc.subjectUltrasound imagingen_US
dc.subjectBandwidthen_US
dc.subjectFadingen_US
dc.subjectFinite element methoden_US
dc.subjectPower qualityen_US
dc.subjectPulse amplitude modulationen_US
dc.subjectSignal to noise ratioen_US
dc.subjectUltrasonicsen_US
dc.subjectElectric Capacitanceen_US
dc.subjectUltrasonic therapyen_US
dc.subjectUltrasonographyen_US
dc.titleDeep-collapse operation of capacitive micromachined ultrasonic transducersen_US
dc.typeArticleen_US
dc.departmentDepartment of Electrical and Electronics Engineering
dc.citation.spage2475en_US
dc.citation.epage2483en_US
dc.citation.volumeNumber58en_US
dc.citation.issueNumber11en_US
dc.identifier.doi10.1109/TUFFC.2011.2104en_US
dc.publisherIEEEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record