Show simple item record

dc.contributor.authorÇınar, Y.en_US
dc.contributor.authorYaman, H.en_US
dc.date.accessioned2016-02-08T09:50:05Z
dc.date.available2016-02-08T09:50:05Z
dc.date.issued2011en_US
dc.identifier.issn0305-0548
dc.identifier.urihttp://hdl.handle.net/11693/21710
dc.description.abstractThe vendor location problem is the problem of locating a given number of vendors and determining the number of vehicles and the service zones necessary for each vendor to achieve at least a given profit. We consider two versions of the problem with different objectives: maximizing the total profit and maximizing the demand covered. The demand and profit generated by a demand point are functions of the distance to the vendor. We propose integer programming models for both versions of the vendor location problem. We then prove that both are strongly NP-hard and we derive several families of valid inequalities to strengthen our formulations. We report the outcomes of a computational study where we investigate the effect of valid inequalities in reducing the duality gaps and the solution times for the vendor location problem.en_US
dc.language.isoEnglishen_US
dc.source.titleComputers & Operations Researchen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.cor.2011.02.011en_US
dc.subjectLocationen_US
dc.subjectVendor location problemen_US
dc.subjectHierarchical facility locationen_US
dc.subjectValid inequalitiesen_US
dc.subjectComputational complexityen_US
dc.titleThe vendor location problemen_US
dc.typeArticleen_US
dc.departmentDepartment of Industrial Engineeringen_US
dc.citation.spage1678en_US
dc.citation.epage1695en_US
dc.citation.volumeNumber38en_US
dc.citation.issueNumber12en_US
dc.identifier.doi10.1016/j.cor.2011.02.011en_US
dc.publisherElsevieren_US
dc.identifier.eissn1873-765X


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record