Exact diffraction calculation from fields specified over arbitrary curved surfaces

View/ Open
Author
Esmer, G. B.
Onural, L.
Ozaktas, H. M.
Date
2011-07-30Journal Title
Optics Communications
ISSN
0030-4018
Publisher
Elsevier
Volume
284
Issue
24
Pages
5537 - 5548
Language
English
Type
Article
Metadata
Show full item recordPlease cite this item using this persistent URL
http://hdl.handle.net/11693/21698Abstract
Calculation of the scalar diffraction field over the entire space from a given field over a surface is an important problem in computer generated holography. A straightforward approach to compute the diffraction field from field samples given on a surface is to superpose the emanated fields from each such sample. In this approach, possible mutual interactions between the fields at these samples are omitted and the calculated field may be significantly in error. In the proposed diffraction calculation algorithm, mutual interactions are taken into consideration, and thus the exact diffraction field can be calculated. The algorithm is based on posing the problem as the inverse of a problem whose formulation is straightforward. The problem is then solved by a signal decomposition approach. The computational cost of the proposed method is high, but it yields the exact scalar diffraction field over the entire space from the data on a surface.
Published as
http://dx.doi.org/10.1016/j.optcom.2011.07.040Collections
Related items
Showing items related by title, author, creator and subject.
-
Bessel functions - Based reconstruction of non-uniformly sampled diffraction fields
Uzunov V.; Esmer G.B.; Gotchev, A.; Onural L.; Ozaktas, H., M. (2007)A discrete computational model for the diffraction process is essential in forward problems related to holographic TV. The model must be as general as possible, since the shape of the displayed objects does not bear any ... -
Reconstruction of scalar diffraction field from distributed data points over 3D space
Esmer G.B.; Uzunov V.; Onural L.; Gotchev, A.; Ozaktas, H., M. (2007)Diffraction field computation is an important task in the signal conversion stage of the holographic 3DTV. We consider an abstract setting, where the diffraction field of the desired 3D scene to be displayed is given by ... -
Scalar diffraction field calculation from curved surfaces via Gaussian beam decomposition
Şahin, E.; Onural, L. (Optical Society of America, 2012-06-29)We introduce a local signal decomposition method for the analysis of three-dimensional (3D) diffraction fields involving curved surfaces. We decompose a given field on a two-dimensional curved surface into a sum of properly ...