Covering a rectangular chessboard with staircase walks
Author
Kerimov, A.
Date
2015Source Title
Discrete Mathematics
Print ISSN
0012-365X
Electronic ISSN
1872-681X
Publisher
Elsevier
Volume
338
Issue
12
Pages
2229 - 2233
Language
English
Type
ArticleItem Usage Stats
122
views
views
100
downloads
downloads
Abstract
Let C(n, m) be a n×m chessboard. An ascending (respectively descending) staircase walk on
C(n, m) is a rook’s path on C(n, m) that in every step goes either right or up (respectively right or down). We determine the minimal number of ascending and descending staircase walks covering C(n, m).