Show simple item record

dc.contributor.authorBarker, L.en_US
dc.contributor.authorTuvay, İ.en_US
dc.date.accessioned2016-02-08T09:48:08Z
dc.date.available2016-02-08T09:48:08Z
dc.date.issued2012en_US
dc.identifier.issn0021-8693
dc.identifier.urihttp://hdl.handle.net/11693/21567
dc.description.abstractWe introduce a restriction morphism, called the Boltje morphism, from a given ordinary representation functor to a given monomial Burnside functor. In the case of a sufficiently large fibre group, this is Robert Boltje's splitting of the linearization morphism. By considering a monomial Lefschetz invariant associated with real representation spheres, we show that, in the case of the real representation ring and the fibre group {±1}, the image of a modulo 2 reduction of the Boltje morphism is contained in a group of units associated with the idempotents of the 2-local Burnside ring. We deduce a relation on the dimensions of the subgroup-fixed subspaces of a real representation. © 2011 Elsevier Inc.en_US
dc.language.isoEnglishen_US
dc.source.titleJournal of Algebraen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jalgebra.2011.12.009en_US
dc.subjectMonomial Lefschetz invariantsen_US
dc.subjectReal representation spheresen_US
dc.subjectReal representations of finite groupsen_US
dc.subjectprimary 20C15en_US
dc.subjectsecondary 19A22en_US
dc.titleReal representation spheres and the real monomial Burnside ringen_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematicsen_US
dc.citation.spage79en_US
dc.citation.epage92en_US
dc.citation.volumeNumber353en_US
dc.citation.issueNumber1en_US
dc.identifier.doi10.1016/j.jalgebra.2011.12.009en_US
dc.publisherElsevioren_US
dc.identifier.eissn218693


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record