Show simple item record

dc.contributor.authorOktel, M. Ö.en_US
dc.date.accessioned2016-02-08T09:47:43Z
dc.date.available2016-02-08T09:47:43Z
dc.date.issued2012en_US
dc.identifier.issn1434-6060
dc.identifier.urihttp://hdl.handle.net/11693/21535
dc.description.abstractWe consider a single particle hopping on a tight binding lattice formed by the vertices of a regular polyhedron and discuss the effect of a magnetic monopole enclosed in the polyhedron. The presence of the monopole induces phases on the hopping terms, given by Peierls substitution. By requiring the flux through each face of a regular polyhedron to be the same, Dirac's quantization condition is obtained in this discrete setting. For each regular polyhedron, we calculate the energy spectrum for an arbitrary value of the flux through a Dirac string coming in from one of the faces. We find that the energy levels are degenerate only when the flux through the Dirac string corresponds to a quantized monopole. We show that the degeneracies in the presence of the monopole can be classified using the double group of the symmetry of the polyhedron and label all energy levels with corresponding irreducible representations.en_US
dc.language.isoEnglishen_US
dc.source.titleEuropean Physical Journal Den_US
dc.relation.isversionofhttp://dx.doi.org/10.1140/epjd/e2012-20484-yen_US
dc.titleSpectrum of a particle on a polyhedron enclosing a synthetic magnetic monopoleen_US
dc.typeArticleen_US
dc.departmentDepartment of Physicsen_US
dc.citation.volumeNumber66en_US
dc.citation.issueNumber4en_US
dc.identifier.doi10.1140/epjd/e2012-20484-yen_US
dc.publisherSpringeren_US
dc.identifier.eissn1434-6079


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record