• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Computer Engineering
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Computer Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Novelty detection for topic tracking

      Thumbnail
      View/Open
      Full printable version (351.8Kb)
      Author
      Aksoy, C.
      Can, F.
      Kocberber, S.
      Date
      2012
      Journal Title
      Association for Information Science and Technology. Journal
      ISSN
      2330-1635
      Publisher
      John Wiley & Sons, Inc.
      Volume
      63
      Issue
      4
      Pages
      777 - 795
      Language
      English
      Type
      Article
      Metadata
      Show full item record
      Please cite this item using this persistent URL
      http://hdl.handle.net/11693/21530
      Abstract
      Multisource web news portals provide various advantages such as richness in news content and an opportunity to follow developments from different perspectives. However, in such environments, news variety and quantity can have an overwhelming effect. New-event detection and topic-tracking studies address this problem. They examine news streams and organize stories according to their events; however, several tracking stories of an event/topic may contain no new information (i.e., no novelty). We study the novelty detection (ND) problem on the tracking news of a particular topic. For this purpose, we build a Turkish ND test collection called BilNov-2005 and propose the usage of three ND methods: a cosine-similarity (CS)-based method, a language-model (LM)-based method, and a cover-coefficient (CC)-based method. For the LM-based ND method, we show that a simpler smoothing approach, Dirichlet smoothing, can have similar performance to a more complex smoothing approach, Shrinkage smoothing. We introduce a baseline that shows the performance of a system with random novelty decisions. In addition, a category-based threshold learning method is used for the first time in ND literature. The experimental results show that the LM-based ND method significantly outperforms the CS- and CC-based methods, and categorybased threshold learning achieves promising results when compared to general threshold learning. © 2011 ASIS&T.
      Published as
      http://dx.doi.org/10.1002/asi.21697
      Collections
      • Department of Computer Engineering 1111

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the webmaster. Phone: (312) 290 1771
      Copyright © Bilkent University | Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin