Show simple item record

dc.contributor.authorPir, A.F.en_US
dc.contributor.authorSezer, M.en_US
dc.date.accessioned2016-02-08T09:47:39Z
dc.date.available2016-02-08T09:47:39Z
dc.date.issued2012en_US
dc.identifier.issn0022-4049
dc.identifier.urihttp://hdl.handle.net/11693/21528
dc.description.abstractA homogeneous set of monomials in a quotient of the polynomial ring S:=F[x 1,..,x n] is called Gotzmann if the size of this set grows minimally when multiplied with the variables. We note that Gotzmann sets in the quotient R:=F[x1,...,xn]/(x1a) arise from certain Gotzmann sets in S. Secondly, we prove a combinatorial result about the deletion of a variable in a Gotzmann set in S. © 2011 Elsevier B.V.en_US
dc.language.isoEnglishen_US
dc.source.titleJournal of Pure and Applied Algebraen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jpaa.2011.10.007en_US
dc.subject13F20en_US
dc.subject13D40en_US
dc.titleTwo remarks on monomial Gotzmann setsen_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematicsen_US
dc.citation.spage833en_US
dc.citation.epage836en_US
dc.citation.volumeNumber216en_US
dc.citation.issueNumber4en_US
dc.identifier.doi10.1016/j.jpaa.2011.10.007en_US
dc.publisherElsevieren_US
dc.identifier.eissn1873-1376


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record