Oscillatory synchronization model of attention to moving objects
Author
Yilmaz, O.
Date
2012Source Title
Neural Networks
Print ISSN
0893-6080
Publisher
Elsevier
Volume
29-30
Pages
20 - 36
Language
English
Type
ArticleItem Usage Stats
156
views
views
113
downloads
downloads
Abstract
The world is a dynamic environment hence it is important for the visual system to be able to deploy attention on moving objects and attentively track them. Psychophysical experiments indicate that processes of both attentional enhancement and inhibition are spatially focused on the moving objects; however the mechanisms of these processes are unknown. The studies indicate that the attentional selection of target objects is sustained via a feedforward-feedback loop in the visual cortical hierarchy and only the target objects are represented in attention-related areas. We suggest that feedback from the attention-related areas to early visual areas modulates the activity of neurons; establishes synchronization with respect to a common oscillatory signal for target items via excitatory feedback, and also establishes de-synchronization for distractor items via inhibitory feedback. A two layer computational neural network model with integrate-and-fire neurons is proposed and simulated for simple attentive tracking tasks. Consistent with previous modeling studies, we show that via temporal tagging of neural activity, distractors can be attentively suppressed from propagating to higher levels. However, simulations also suggest attentional enhancement of activity for distractors in the first layer which represents neural substrate dedicated for low level feature processing. Inspired by this enhancement mechanism, we developed a feature based object tracking algorithm with surround processing. Surround processing improved tracking performance by 57% in PETS 2001 dataset, via eliminating target features that are likely to suffer from faulty correspondence assignments. © 2012 Elsevier Ltd.
Keywords
AttentionCortical oscillations
Neural synchrony
Object tracking
Computational neural networks
Data sets
Desynchronization
Dynamic environments
Enhancement mechanism
Feature-based
Inhibitory feedback
Integrate-and-fire neurons
Low-level features
Modeling studies
Moving objects
Neural activity
Neural substrates
Object tracking algorithm
Oscillatory signals
Oscillatory synchronization
Psychophysical experiments
Target feature
Target object
Tracking performance
Two layers
Visual areas
Visual cortical
Visual systems
Brain
Neural networks
Feedback
Permalink
http://hdl.handle.net/11693/21483Published Version (Please cite this version)
http://dx.doi.org/10.1016/j.neunet.2012.01.005Collections
Related items
Showing items related by title, author, creator and subject.
-
Weakly supervised object localization with multi-fold multiple instance learning
Cinbis, R. G.; Verbeek, J.; Schmid, C. (IEEE Computer Society, 2017)Object category localization is a challenging problem in computer vision. Standard supervised training requires bounding box annotations of object instances. This time-consuming annotation process is sidestepped in weakly ... -
Fractional fourier transform pre-processing for neural networks and its application to object recognition
Barshan, Billur; Ayrulu, Birsel (Elsevier, 2002-01)This study investigates fractional Fourier transform pre-processing of input signals to neural networks. The fractional Fourier transform is a generalization of the ordinary Fourier transform with an order parameter a. ... -
Transform pre-processing for neural networks for object recognition and localization with sonar
Barshan, Billur; Ayrulu, Birsel (SPIE, 2003)We investigate the pre-processing of sonar signals prior to using neural networks for robust differentiation of commonly encountered features in indoor environments. Amplitude and time-of-flight measurement patterns acquired ...