Show simple item record

dc.contributor.authorSezer, M.en_US
dc.contributor.authorÜnlü, Ö.en_US
dc.date.accessioned2016-02-08T09:46:09Z
dc.date.available2016-02-08T09:46:09Z
dc.date.issued2012en_US
dc.identifier.issn0949-5932
dc.identifier.urihttp://hdl.handle.net/11693/21428
dc.description.abstractThe Hilbert ideal is the ideal generated by positive degree invariants of a finite group. We consider the vector invariants of the natural action of S n . For S 2 we compute the reduced and universal Gröbner bases for the Hilbert ideal. As well, we identify all initial form ideals of the Hilbert ideal and describe its Gröbner fan. In modular characteristics, we show that the Hilbert ideal for S 3 can be generated by polynomials of degree at most three and the reduced Gröbner basis contains no polynomials that involve variables from four or more copies. Our results give support for conjectures for improved degree bounds and regularity conditions on the Gröbner bases for the Hilbert ideal of vector invariants of S n. © 2012 Heldermann Verlag.en_US
dc.language.isoEnglishen_US
dc.source.titleJournal of Lie Theoryen_US
dc.subject13P10en_US
dc.subject13A50en_US
dc.titleHilbert ideals of vector invariants of s2 and S3en_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematicsen_US
dc.citation.spage1181en_US
dc.citation.epage1196en_US
dc.citation.volumeNumber22en_US
dc.citation.issueNumber4en_US
dc.publisherHeldermann Verlagen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record