A polyhedral study of multiechelon lot sizing with intermediate demands

Date

2012

Authors

Zhang, M.
Küçükyavuz, S.
Yaman, H.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
4
views
16
downloads

Citation Stats

Series

Abstract

In this paper, we study a multiechelon uncapacitated lot-sizing problem in series (m-ULS), where the output of the intermediate echelons has its own external demand and is also an input to the next echelon. We propose a polynomial-time dynamic programming algorithm, which gives a tight, compact extended formulation for the two-echelon case (2-ULS). Next, we present a family of valid inequalities for m-ULS, show its strength, and give a polynomial-time separation algorithm. We establish a hierarchy between the alternative formulations for 2-ULS. In particular, we show that our valid inequalities can be obtained from the projection of the multicommodity formulation. Our computational results show that this extended formulation is very effective in solving our uncapacitated multi-item two-echelon test problems. In addition, for capacitated multi-item, multiechelon problems, we demonstrate the effectiveness of a branch-and-cut algorithm using the proposed inequalities.

Source Title

Operations Research

Publisher

Institute for Operations Research and the Management Sciences (I N F O R M S)

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English