Show simple item record

dc.contributor.authorHüsseinov, F.en_US
dc.contributor.authorSagara, N.en_US
dc.date.accessioned2016-02-08T09:46:01Z
dc.date.available2016-02-08T09:46:01Z
dc.date.issued2012en_US
dc.identifier.issn0165-0114
dc.identifier.urihttp://hdl.handle.net/11693/21416
dc.description.abstractThe main purpose of this paper is to prove the existence of the fuzzy core of an exchange economy with a heterogeneous divisible commodity in which preferences of individuals are given by nonadditive utility functions defined on a σ-algebra of admissible pieces of the total endowment of the commodity. The problem is formulated as the partitioning of a measurable space among finitely many individuals. Applying the Yosida-Hewitt decomposition theorem, we also demonstrate that partitions in the fuzzy core are supportable by prices in L 1. © 2012 Elsevier B.V.en_US
dc.language.isoEnglishen_US
dc.source.titleFuzzy Sets and Systemsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.fss.2011.12.021en_US
dc.subjectConcave measureen_US
dc.subjectFuzzy coalitionen_US
dc.subjectFuzzy coreen_US
dc.subjectNonatomic vector measureen_US
dc.subjectSupporting priceen_US
dc.subjectYosida-Hewitt decompositionen_US
dc.subjectArtificial intelligenceen_US
dc.subjectFuzzy setsen_US
dc.subjectDomain decomposition methodsen_US
dc.titleConcave measures and the fuzzy core of exchange economies with heterogeneous divisible commoditiesen_US
dc.typeArticleen_US
dc.departmentDepartment of Economicsen_US
dc.citation.spage70en_US
dc.citation.epage82en_US
dc.citation.volumeNumber198en_US
dc.identifier.doi10.1016/j.fss.2011.12.021en_US
dc.publisherElsevier BVen_US
dc.identifier.eissn1872-6801


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record