Show simple item record

dc.contributor.authorIlhan, A.G.en_US
dc.date.accessioned2016-02-08T09:45:41Z
dc.date.available2016-02-08T09:45:41Z
dc.date.issued2012en_US
dc.identifier.issn14722747
dc.identifier.urihttp://hdl.handle.net/11693/21395
dc.description.abstractLet G be a finite group and H be a family of subgroups of G which is closed under conjugation and taking subgroups. Let B be a G-CW-complex whose isotropy subgroups are in H and let F = {F H} H e{open}H be a compatible family of H -spaces. A G -fibration over B with the fiber type F = {F H} H e{open}H is a G -equivariant fibration p: E → B where p -1(b) is G b -homotopy equivalent to F Gb for each b e{open} B. In this paper, we develop an obstruction theory for constructing G-fibrations with the fiber type F over a given G -CW-complex B. Constructing G -fibrations with a prescribed fiber type F is an important step in the construction of free G -actions on finite CW-complexes which are homotopy equivalent to a product of spheres.en_US
dc.language.isoEnglishen_US
dc.source.titleAlgebraic and Geometric Topologyen_US
dc.relation.isversionof10.2140/agt.2012.12.1313en_US
dc.subjectBredon cohomologyen_US
dc.subjectEquivariant fibrationen_US
dc.subjectGroup actionen_US
dc.subjectObstruction theoryen_US
dc.titleObstructions for constructing equivariant fibrationsen_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematicsen_US
dc.citation.spage1313en_US
dc.citation.epage1330en_US
dc.citation.volumeNumber12en_US
dc.citation.issueNumber3en_US
dc.identifier.doi10.2140/agt.2012.12.1313en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record