Show simple item record

dc.contributor.authorCakmak, T.en_US
dc.contributor.authorAngun P.en_US
dc.contributor.authorDemiray, Y.E.en_US
dc.contributor.authorOzkan, A.D.en_US
dc.contributor.authorElibol, Z.en_US
dc.contributor.authorTekinay, T.en_US
dc.date.accessioned2016-02-08T09:45:25Z
dc.date.available2016-02-08T09:45:25Z
dc.date.issued2012en_US
dc.identifier.issn0006-3592
dc.identifier.urihttp://hdl.handle.net/11693/21374
dc.description.abstractBiodiesel production from microalgae is a promising approach for energy production; however, high cost of its process limits the use of microalgal biodiesel. Increasing the levels of triacylglycerol (TAG) levels, which is used as a biodiesel feedstock, in microalgae has been achieved mainly by nitrogen starvation. In this study, we compared effects of sulfur (S) and nitrogen (N) starvation on TAG accumulation and related parameters in wild-type Chlamydomonas reinhardtii CC-124 mt(-) and CC-125 mt(+) strains. Cell division was interrupted, protein and chlorophyll levels rapidly declined while cell volume, total neutral lipid, carotenoid, and carbohydrate content increased in response to nutrient starvation. Cytosolic lipid droplets in microalgae under nutrient starvation were monitored by three-dimensional confocal laser imaging of live cells. Infrared spectroscopy results showed that relative TAG, oligosaccharide and polysaccharide levels increased rapidly in response to nutrient starvation, especially S starvation. Both strains exhibited similar levels of regulation responses under mineral deficiency, however, the degree of their responses were significantly different, which emphasizes the importance of mating type on the physiological response of algae. Neutral lipid, TAG, and carbohydrate levels reached their peak values following 4 days of N or S starvation. Therefore, 4 days of N or S starvation provides an excellent way of increasing TAG content. Although increase in these parameters was followed by a subsequent decline in N-starved strains after 4 days, this decline was not observed in S-starved ones, which shows that S starvation is a better way of increasing TAG production of C. reinhardtii than N starvation. © 2012 Wiley Periodicals, Inc.en_US
dc.language.isoEnglishen_US
dc.source.titleBiotechnology and Bioengineeringen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/bit.24474en_US
dc.subjectBiodieselen_US
dc.subjectChlamydomonas reinhardtiien_US
dc.subjectMicroalgaeen_US
dc.subjectNitrogen starvationen_US
dc.subjectSulfur starvationen_US
dc.subjectTriacylglycerolen_US
dc.subjectBiodiesel feedstocken_US
dc.subjectBiodiesel productionen_US
dc.subjectCarbohydrate contenten_US
dc.subjectCell divisionsen_US
dc.subjectCell volumeen_US
dc.subjectChlamydomonas reinhardtiien_US
dc.subjectCytosolicen_US
dc.subjectDifferential effecten_US
dc.subjectEnergy productionsen_US
dc.subjectHigh costsen_US
dc.subjectLaser imagingen_US
dc.subjectLipid dropletsen_US
dc.subjectLive cellen_US
dc.subjectMicro-algaeen_US
dc.subjectNeutral lipiden_US
dc.subjectNitrogen starvationen_US
dc.subjectNutrient-starvationen_US
dc.subjectPeak valuesen_US
dc.subjectPhysiological responseen_US
dc.subjectProcess limitsen_US
dc.subjectSulfur deprivationen_US
dc.subjectTriacylglycerolsen_US
dc.subjectWild typesen_US
dc.subjectAlgaeen_US
dc.subjectBiodieselen_US
dc.subjectCarbohydratesen_US
dc.subjectCell proliferationen_US
dc.subjectChlorophyllen_US
dc.subjectFeedstocksen_US
dc.subjectGlycerolen_US
dc.subjectInfrared spectroscopyen_US
dc.subjectMicroorganismsen_US
dc.subjectNitrogenen_US
dc.subjectNutrientsen_US
dc.subjectSulfuren_US
dc.subjectPhysiological modelsen_US
dc.subjectalgal proteinen_US
dc.subjectamideen_US
dc.subjectbiodieselen_US
dc.subjectcarbohydrateen_US
dc.subjectcarotenoiden_US
dc.subjectchlorophyllen_US
dc.subjectlipiden_US
dc.subjectnitrogenen_US
dc.subjectoligosaccharideen_US
dc.subjectpolysaccharideen_US
dc.subjectstarchen_US
dc.subjectsulfuren_US
dc.subjecttriacylglycerolen_US
dc.subjectalgal cell cultureen_US
dc.subjectalgal growthen_US
dc.subjectarticleen_US
dc.subjectbiofuel productionen_US
dc.subjectcell divisionen_US
dc.subjectcell volumeen_US
dc.subjectChlamydomonas reinhardtiien_US
dc.subjectconfocal laser microscopyen_US
dc.subjectcontrolled studyen_US
dc.subjectcytosolen_US
dc.subjectinfrared spectroscopyen_US
dc.subjectnonhumanen_US
dc.subjectnutrient limitationen_US
dc.subjectthree dimensional imagingen_US
dc.subjectwild typeen_US
dc.subjectBiofuelsen_US
dc.subjectCarbohydratesen_US
dc.subjectChlamydomonas reinhardtiien_US
dc.subjectCytosolen_US
dc.subjectLipidsen_US
dc.subjectNitrogenen_US
dc.subjectPlant Proteinsen_US
dc.subjectSpectrum Analysisen_US
dc.subjectSulfuren_US
dc.subjectTriglyceridesen_US
dc.subjectalgaeen_US
dc.subjectChlamydomonas reinhardtiien_US
dc.titleDifferential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtiien_US
dc.typeArticleen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.citation.spage1947en_US
dc.citation.epage1957en_US
dc.citation.volumeNumber109en_US
dc.citation.issueNumber8en_US
dc.identifier.doi10.1002/bit.24474en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record