• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Institute of Materials Science and Nanotechnology (UNAM)
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Institute of Materials Science and Nanotechnology (UNAM)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Chlorine adsorption on graphene: chlorographene

      Thumbnail
      View / Download
      3.0 Mb
      Author
      Şahin, H.
      Çıracı, Salim
      Date
      2012
      Source Title
      Journal of Physical Chemistry C
      Print ISSN
      1932-7447
      Publisher
      American Chemical Society
      Volume
      116
      Issue
      45
      Pages
      24075 - 24083
      Language
      English
      Type
      Article
      Item Usage Stats
      152
      views
      136
      downloads
      Abstract
      We perform first-principles structure optimization, phonon frequency, and finite temperature molecular dynamics calculations based on density functional theory to study the interaction of chlorine atoms with graphene predicting the existence of possible chlorinated graphene derivatives. The bonding of a single chlorine atom is ionic through the transfer of charge from graphene to chlorine adatom and induces negligible local distortion in the underlying planar graphene. Different from hydrogen and fluorine adatoms, the migration of a single chlorine adatom on the surface of perfect graphene takes place almost without barrier. However, the decoration of one surface of graphene with Cl adatoms leading to various conformations cannot be sustained due to strong Cl-Cl interaction resulting in the desorption through the formation of Cl2 molecules. On the contrary, the fully chlorinated graphene, chlorographene CCl, where single chlorine atoms are bonded alternatingly to each carbon atom from different sides of graphene with sp3-type covalent bonds, is buckled. We found that this structure is stable and is a direct band gap semiconductor, whose band gap can be tuned by applied uniform strain. Calculated phonon dispersion relation and four Raman-active modes of chlorographene are discussed. © 2012 American Chemical Society.
      Permalink
      http://hdl.handle.net/11693/21261
      Published Version (Please cite this version)
      http://dx.doi.org/10.1021/jp307006c
      Collections
      • Department of Physics 2345
      • Institute of Materials Science and Nanotechnology (UNAM) 1858
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy