Show simple item record

dc.contributor.authorHaider A.en_US
dc.contributor.authorKizir S.en_US
dc.contributor.authorOzgit Akgun, C.en_US
dc.contributor.authorGoldenberg, E.en_US
dc.contributor.authorLeghari, S. A.en_US
dc.contributor.authorOkyay, A., K.en_US
dc.contributor.authorBiyikli, N.en_US
dc.date.accessioned2016-02-08T09:43:48Z
dc.date.available2016-02-08T09:43:48Z
dc.date.issued2015-08en_US
dc.identifier.issn2050-7534
dc.identifier.urihttp://hdl.handle.net/11693/21259
dc.description.abstractHerein, we report on atomic layer deposition of ternary InxGa1−xN alloys with different indium contents using a remotely integrated hollow cathode plasma source. Depositions were carried out at 200 °C using organometallic Ga and In precursors along with N2/H2 and N2 plasma, respectively. The effect of In content on structural, optical, and morphological properties of InxGa1−xN thin films was investigated. Grazing incidence X-ray diffraction showed that all InxGa1−xN thin films were polycrystalline with a hexagonal wurtzite structure. X-ray photoelectron spectroscopy depicted the peaks of In, Ga, and N in bulk of the film and revealed the presence of relatively low impurity contents. In contents of different InxGa1−xN thin films were determined by energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. Transmission electron microscopy also confirmed the polycrystalline structure of InxGa1−xN thin films, and elemental mapping further revealed the uniform distribution of In and Ga within the bulk of InxGa1−xN films. Higher In concentrations resulted in an increase of refractive indices of ternary alloys from 2.28 to 2.42 at a wavelength of 650 nm. The optical band edge of InxGa1−xN films red-shifted with increasing In content, confirming the tunability of the band edge with alloy composition. Photoluminescence measurements exhibited broad spectral features with an In concentration dependent wavelength shift and atomic force microscopy revealed low surface roughness of InxGa1−xN films with a slight increase proportional to In content.en_US
dc.language.isoEnglishen_US
dc.source.titleJournal of Materials Chemistry Cen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/c5tc01735aen_US
dc.subjectAtomic force microscopyen_US
dc.subjectAtomic layer depositionen_US
dc.subjectCathodesen_US
dc.subjectDepositionen_US
dc.subjectElectrodesen_US
dc.subjectElectron sourcesen_US
dc.subjectEnergy dispersive spectroscopyen_US
dc.subjectGalliumen_US
dc.subjectGallium alloysen_US
dc.subjectHigh resolution transmission electron microscopyen_US
dc.subjectIndiumen_US
dc.subjectIndium alloysen_US
dc.subjectMetallic filmsen_US
dc.subjectOrganometallicsen_US
dc.subjectPhotoelectronsen_US
dc.subjectPhotonsen_US
dc.subjectPulsed laser depositionen_US
dc.subjectRefractive indexen_US
dc.subjectSurface roughnessen_US
dc.subjectTemperatureen_US
dc.subjectTransmission electron microscopyen_US
dc.subjectX ray diffractionen_US
dc.subjectX ray photoelectron spectroscopyen_US
dc.subjectX ray spectroscopyen_US
dc.subjectZinc sulfideen_US
dc.subjectConcentration-dependenten_US
dc.subjectGrazing incidence X-ray diffractionen_US
dc.subjectHexagonal wurtzite structureen_US
dc.subjectLow surface roughnessen_US
dc.subjectLow-temperature grownen_US
dc.subjectMorphological propertiesen_US
dc.subjectPhotoluminescence measurementsen_US
dc.subjectPolycrystalline structureen_US
dc.subjectThin filmsen_US
dc.titleLow-temperature grown wurtzite InxGa1−xN thin films via hollow cathode plasma-assisted atomic layer depositionen_US
dc.typeArticleen_US
dc.departmentDepartment of Electrical and Electronics Engineering
dc.departmentNational Nanotechnology Research Centeren_US
dc.departmentInstitute of Materials Science and Nanotechnologyen_US
dc.citation.spage9620en_US
dc.citation.epage9630en_US
dc.citation.volumeNumber3en_US
dc.citation.issueNumber37en_US
dc.identifier.doi10.1039/c5tc01735aen_US
dc.publisherRoyal Society of Chemistryen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record