A multi-modal video analysis approach for car park fire detection
Author
Verstockt, S.
Hoecke, S. V.
Beji, T.
Merci, B.
Gouverneur, B.
Çetin, A. Enis
Potter, P. D.
Walle, R. V. D.
Date
2013Source Title
Fire Safety Journal
Print ISSN
0379-7112
Publisher
Elsevier
Volume
57
Pages
44 - 57
Language
English
Type
ArticleItem Usage Stats
144
views
views
114
downloads
downloads
Abstract
In this paper a novel multi-modal flame and smoke detector is proposed for the detection of fire in large open spaces such as car parks. The flame detector is based on the visual and amplitude image of a time-of-flight camera. Using this multi-modal information, flames can be detected very accurately by visual flame feature analysis and amplitude disorder detection. In order to detect the low-cost flame related features, moving objects in visual images are analyzed over time. If an object possesses high probability for each of the flame characteristics, it is labeled as candidate flame region. Simultaneously, the amplitude disorder is also investigated. Also labeled as candidate flame regions are regions with high accumulative amplitude differences and high values in all detail images of the amplitude image's discrete wavelet transform. Finally, when there is overlap of at least one of the visual and amplitude candidate flame regions, fire alarm is raised. The smoke detector, on the other hand, focuses on global changes in the depth images of the time-of-flight camera, which do not have significant impact on the amplitude images. It was found that this behavior is unique for smoke. Experiments show that the proposed detectors improve the accuracy of fire detection in car parks. The flame detector has an average flame detection rate of 93%, with hardly any false positive detection, and the smoke detection rate of the TOF based smoke detector is 88%.
Keywords
Flame detectionMulti-modal video analysis
Smoke detection
Time-of-flight imaging
Video fire detection
Video surveillance
Fire detection
Flame detection
Smoke detection
Time-of-flight imaging
Video analysis
Video surveillance
Amplitude modulation
Cameras
Discrete wavelet transforms
Garages (parking)
Parking
Security systems
Smoke detectors
Detectors
Permalink
http://hdl.handle.net/11693/21139Published Version (Please cite this version)
http://dx.doi.org/10.1016/j.firesaf.2012.07.005Collections
Related items
Showing items related by title, author, creator and subject.
-
Flame detection method in video using covariance descriptors
Habiboǧlu, Y.H.; Günay, Osman; Çetin, A. Enis (IEEE, 2011)Video fire detection system which uses a spatio-temporal covariance matrix of video data is proposed. This system divides the video into spatio-temporal blocks and computes covariance features extracted from these blocks ... -
Covariance matrix-based fire and flame detection method in video
Habiboğlu, Y. H.; Günay, O.; Çetin, A. Enis (Springer, 2011-09-17)This paper proposes a video-based fire detection system which uses color, spatial and temporal information. The system divides the video into spatio-temporal blocks and uses covariance-based features extracted from these ... -
Systematic evaluation of face detection algorithms on news videos
Acar, Can; Atlas, Arda; Çevik, Koray; Ölmez İsa; Ünlü, Mustafa; Özkan, Derya; Duygulu, Pınar (IEEE, 2007)People are the most important subjects in news videos and for proper retrieval of people images; face detection is a very crucial step. However, face detection and recognition in news videos is a very challenging task due ...