Properties of high specific strength Al-4wt.% Al2O3/B4C nano-composite produced by accumulative roll bonding process

Date
2013
Authors
Alizadeh, M.
beni H.A.
Ghaffari, M.
Amini, R.
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Materials and Design
Print ISSN
0261-3069
Electronic ISSN
Publisher
Elsevier Ltd
Volume
50
Issue
Pages
427 - 432
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

The influence of nano-scale reinforcement on the mechanical and microstructural properties of ultrafine-grained composites was studied. Al matrix (pure aluminum) composites, with a grain size of 230nm and B4C and Al2O3 reinforcements with an average size of 50nm, were fabricated via the accumulative roll bonding (ARB) process. To evaluate structure and microstructure of the produced composites, X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM) were applied. Mechanical properties of the specimens were investigated by tensile and hardness tests. The result revealed that in comparison with monolithic Al (ARBed Al without ceramic particles), the presence of nano-particles enhances specific strength of composites. Also, the results showed that with increasing ARB cycles, the microhardness of the composites increases. In addition, the specific strength and microhardness of the composite samples are higher than those of the monolithic Al. The density of the composite samples and monolithic Al was measured by the Archimedes method showing that the density decreases in presence of ceramic particles. © 2013 Elsevier Ltd.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)